期刊文献+

基于能量释放率理论的三维应力强度因子显式闭合解 被引量:3

Explicit Closed-Form Solutions for Three-Dimensional Stress Intensity Factors Based on the Energy Release Rate Theory
下载PDF
导出
摘要 基于能量差率基本原理,以非穿透裂纹深度的相对值作为控制裂纹虚比例扩展的无量纲几何参量,构造求解裂纹张开位移幅值的伯努利微分方程,导出以裂纹绝对尺寸和相对尺寸为参数的裂纹张开位移幅值表达式,得到有限大体非穿透裂纹三维应力强度因子闭合解。并给出无量纲应力强度因子与各种相对尺寸参数关系的显式表达式,计算结果与Newman的有限元分析结果基本一致。该方法在工程结构损伤容限与耐久性设计应用中更加便捷、高效。 To solve the crack opening displacement amplitude,the Bernoulli non-liner differential equa-tion based on the energy release rate principle is established,where the relative depth of non-throughcrack is defined as a dimensionless geometric variable to control the virtual proportional crack growth. Theequation of crack opening displacement amplitude is thus expressed with parameters of absolute and rela-tive crack dimensions. A closed form solution for three-dimensional stress intensity factors in a finite bodyis then obtained. Finally,the explicit expression of the relationship between the dimensionless stress inten-sity factor and the relative crack parameter is given. The results agree well with those obtained with the con-ventional finite element method,while this method is more convenient and efficient in engineering structur-al damage tolerance and durability design applications.
出处 《中国舰船研究》 2014年第1期81-90,共10页 Chinese Journal of Ship Research
关键词 应力强度因子 能量释放率 裂纹 闭合解 断裂力学 stress intensity factor energy release rate crack closed form solution fracture mechanics
  • 相关文献

参考文献16

  • 1SRIPICHAI K,PAN J. Closed-form structural stressand stress intensity factor solutions for spot welds insquare overlap parts of cross-tension specimens[J].Engineering Fracture Mechanics,2012,96:307-327.
  • 2PERL M,BERNSHTEIN V. Three-dimensional stressintensity factors for ring cracks and arrays of coplanarcracks emanating from the inner surface of a sphericalpressure vessel[J]. Engineering Fracture Mechanics,2012,94:71-84.
  • 3LI C Q,YANG S T. Stress intensity factors for high as-pect ratio semi-elliptical internal surface cracks inpipes[J]. International Journal of Pressure Vessels andPiping,2012,96/97:13-23.
  • 4汤英,张晓晶,吴学仁.单边缺口拉伸试样喷丸强化残余应力及其三维应力强度因子分析[J].航空学报,2012,33(7):1265-1274. 被引量:6
  • 5NAMI M R,ESKANDARI H. Three-dimensional inves-tigations of stress intensity factors in a thermo-mechan-ically loaded cracked FGM hollow cylinder[J]. Interna-tional Journal of Pressure Vessels and Piping,2011,89:222-229.
  • 6AYHAN A O,YüCEL U. Stress intensity factor equa-tions for mixed-mode surface and corner cracks in fi-nite-thickness plates subjected to tension loads[J]. In-ternational Journal of Pressure Vessels and Piping,2011,88(5):181-188.
  • 7SHEN W,CHOO Y S. Stress intensity factor for a tubu-lar T-joint with grouted chord[J]. Engineering Struc-tures,2011,35:37-47.
  • 8TRAN V X,PAN J. Analytical stress intensity factor so-lutions for resistance and friction stir spot welds inlap-shear specimens of different materials and thick-nesses[J]. Engineering Fracture Mechanics,2010,77(14):2611-2639.
  • 9CANG C Z,ZHANG X. A close form solution of stressintensity factors for cracks in three dimensional finitebodies by energy release rate method[J]. EngineeringFracture Mechanics,1989,32(3):419-441.
  • 10ZHI W Q,XING Z,YI R B. A closed form solution ofstress intensity factors for three dimensional finitebodies with unsymmetric cracks by energy releaserate method[J]. International Journal of Fracture,1991,47(4):257-290.

二级参考文献17

  • 1吴学仁 李成功.高强度铝合金的小裂纹效应--CAE-NASA的疲劳与断裂合作项目.国际科技合作课题论文集[M].北京:航空工业出版社,1994..
  • 2Newman J C,Raju I S. Stress intensity factor equations for cracks in three-dimensional finite bodies. Fracture Mechanics,1983,I: 238 ~269.
  • 3CHEN Zhigang,ZHANG Xing. A closed form solution of stress intensity factors for cracks in three-dimensional bodies by energy release rate method. Engineering Fracture Mechanics,1989,32(3): 419 ~ 441.
  • 4WANG QiZhi.,ZHANG Xing,Ren Bingyi. A closed form solution of stress intensity factors for three-dimensional finite bodies with unsymmetric cracks by energy release rate method. International Journal of Fracture,1991,47:257 ~ 290.
  • 5.
  • 6Meguid S A, Shagal G, Stranart J C, et al. Three-dimen- sional dynamic finite element analysis of shot-peening in-duced residual stresses. Finite Elements in Analysis and Design, 1999, 31(3): 179 191.
  • 7Hong T, Ooi J Y, Shaw B. A numerical simulation to re- late the shot peening parameters to the induced residual stress. Engineering Failure Analysis, 2008, 15(8): 1097- 1110.
  • 8Kim T, Lee J H, Lee H, et al. An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots. Materials and Design, 2010, 31(1): 50-59.
  • 9Gao Y K, Wu X R. Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening induced residual stresses. Acta Ma- terialia, 2011, 59(9): 3737-3747.
  • 10R:ju wide ness (4): I S, Newman J C, Jr. Stress-intensity factors for a range of semi elliptical surface cracks in finite thick- plates. Engineering Fracture Mechanics, 1979, 11 817 829.

共引文献14

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部