期刊文献+

用11/2维谱结合小波包能量提取地震动信号特征 被引量:1

Feature Extraction Method of Seismic Signals Based on 11/2 Dimensional Spectrum and Wavelet Packet Energy
下载PDF
导出
摘要 针对车辆(轮式车、履带式车)引起的地震动信号中,具有非平稳、非高斯性特征相互重叠的实际情况,研究了地面活动目标产生的地震动信号特性;从理论上说明了11/2维谱可消除车辆引起的地震动信号中的高斯白噪声或有色噪声,在将11/2维谱分析和小波包能量谱相结合的基础上,提出一种特征提取方法,以便区分不同的车辆目标。在时频域构建以11/2维谱和小波包能量谱作为地震动信号的联合特征向量,建立以训练误差为目标的BP神经网络模式分类器;然后对两类车辆信号进行识别。地震动信号的车辆实测数据表明,该方法能够准确和有效地识别车辆引起的地震动信号。 Aiming at the problem of the overlap of non- stationary and non- Gaussian characteristics in seismic signalsgenerated by vehicles (wheeled vehicles and tracked vehicles), the features of seismic signals generated by ground movingtargets are studied. It is elaborated theoretically that the 112 dimensional spectrum can eliminate Gaussian white noise orcolored noise in vehicle induced seismic signals. A feature extraction method combining the 112 dimensional spectrum analysiswith wavelet packet energy spectrum is proposed to distinguish different vehicle targets. At first, the joint eigenvectors of 11/2dimensional spectrum and wavelet packet energy spectrum are constructed in time-frequency domains as the seismic signals.Then, the BP neural network pattern classifier with error training as a target is established to identify the two types of vehiclesignals. The results of field experiments show that this method can identify the seismic signals effectively and accurately.
出处 《噪声与振动控制》 CSCD 2014年第1期164-168,共5页 Noise and Vibration Control
关键词 振动与波 地震动信号 11 2维谱 小波包能量谱 特征提取 模式识别 vibration and wave seismic signal 11/2 dimensional spectrum wavelet packet energy spectrum featureextraction pattern recognition
  • 相关文献

参考文献5

二级参考文献21

共引文献96

同被引文献10

  • 1王双维,陈强,李江,魏洪峰,杜丽萍,赵丽华.不同车型的车辆声音与振动信号特征研究[J].声学技术,2007,26(3):460-463. 被引量:9
  • 2Chen Zezhi, PEARS N, FREEMAN M. A gaussian mixture model and support vector manchine approach to vehicle type and colour classification [J]. Intelligent Transport Systems ,IET,2014,8(2) : 135-144.
  • 3DUARTE M F, HU Y H. Vehicle classification in distributed sensor networks [J]. Journal of Parallel and Distributed Computing, 2004,64 (7) : 826-835.
  • 4SHARMA N, JAIRATH A K, SINGH B, et al. Detection of variou s vehicles using wireless seismeicsensor network [C]. 2012 Inernational Conference on Advances in Mobile Network, Communication and its Application ( MNCAPPS ). Bangalore : IEEE, 2012 : 149-155.
  • 5ALJAAFREH A, Liang Dong. An evaluation of feature extraction methods for vehicle classification based on acoustic signals [C]. 2010 International Conference on Networking Sensing and Control(ICNSC).Chicago,2010:570-575.
  • 6KANDPAL M, KAKAR V K, VERMA G. Classification of ground vehicles using acoustic signal processing and neural network classifier [C]. International Conference on Signal Processing and Communication (ICSC).Noida:IEEE,2013: 512-518.
  • 7ANAMI B S, PAGI V B, MAGI S M. Comparative per- formance analysis of three classifiers for acousic signal- based on recognition of motorcycles using time-and fre- quency domain features[J]. Intelligent Transport Systems,I- ET,2012,6(3) :235:242.
  • 8OZGUNDAZ E, TURKEN H I, SENTURK T, et al. Ve- hicle identification using acoustic and seismic signals[C]. Signal Processing and Communications Applications Con- ference (SIU), 2010 IEEE 18th. Diyarbakir: IEEE,2010: 941-944.
  • 9陈俊杰,山宝银.5.8GHz电子不停车收费技术综述[J].同济大学学报(自然科学版),2010,38(11):1675-1681. 被引量:12
  • 10华莉琴,许维,王拓,马瑞芳,胥博.采用改进的尺度不变特征转换及多视角模型对车型识别[J].西安交通大学学报,2013,47(4):92-99. 被引量:25

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部