期刊文献+

连续伪压缩映象不动点的广义逼近方法 被引量:1

General Approximation Methods of Fixed Points for a Continuous Pseudo-Contractive Mapping
下载PDF
导出
摘要 在Hilbert空间中建立了一个逼近连续伪压缩映象不动点的广义迭代逼近方法,并在一定条件下证明了由该方法所产生的序列强收敛到伪压缩映象的某个不动点. A general approximation methods is proposed for finding a fixed point of a continuous pseudo-contractive mapping,which strong convergence theorems are proved under some suitable conditions.The results presented in this paper can be considered as an extension and improvement of some previously known results.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期22-26,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11001287) 重庆市自然科学基金项目(CSTC2012jjA00039 CSTC2013jcyjA00031) 重庆市教委科技研究项目(KJ130712 KJ130731)
关键词 伪压缩映象 不动点 强正算子 广义迭代 变分不等式 pseudo-contractive mapping fixed point strongly positive operator general iteration varia-tional inequality
  • 相关文献

参考文献12

  • 1闻道君,邓磊.渐近非扩张映射的粘滞逼近方法[J].西南师范大学学报(自然科学版),2010,35(3):37-40. 被引量:7
  • 2龚黔芬,闻道君.非凸变分不等式和Wiener-Hopf方程的逼近方法[J].西南师范大学学报(自然科学版),2012,37(2):34-37. 被引量:4
  • 3WEN Dao-jun.StrongConvergenceTheoremsforEquilibrium Problemsandk-StrictPseudocontractionsin HilbertSpaces[EB/OL][2012-10-20].http://www.hindawi.com/journals/aaa/2011/276874/.
  • 4GOEBELK,KIRK W A.TopicsinMetricFixedPointTheory[M].Cambridge:CambridgeUniversityPress,1990.
  • 5XU Hong-kun.ViscosityApproximationMethodsforNonexpansiveMappings[J].JMathAnalAppl,2004,298(1):279-291.
  • 6闻道君,邓磊.有限簇非扩张映象的不动点定理及逼近算法[J].数学物理学报(A辑),2012,32(3):540-546. 被引量:8
  • 7宋传静,吴健荣.两族渐近非扩张非自映射的收敛定理[J].西南大学学报(自然科学版),2013,35(4):95-100. 被引量:1
  • 8MARINOG,XU Hong-kun.AGeneralIterativeMethodforNonexpansiveMappingsinHilbertSpaces[J].JMathAnalAppl,2006,318:43-52.
  • 9ZEGEYEH,SHAHZADN.StrongConvergenceofanIterativeMethodforPseudo-ContractiveandMonotoneMappings[J].JGlobOptim,2012,54:173-184.
  • 10YAOYong-hong,CHENRu-dong,YAOJC.StrongConvergenceandCertainControlConditionsforModifiedMannIteration[J].NonlinearAnal,2008,68:1687-1693.

二级参考文献40

  • 1Xu H K. Viscosity Approximation Methods for Nonexpansive Mappings [J].J Math Anal Appl, 2004, 298:279 -,91.
  • 2Takahashi W. Non-linear Functional Analysis-Fixed Point Theory and its Applications [M]. Yokohama: Yokohama Publishers Ine, 2000.
  • 3Song Y. A New Sufficient Condition for the Strong Convergence of Halpern Type Iterations [J]. Appl Math Comput, 2008, 198:721-728.
  • 4Chang S S, Joseph Lee H W, Chan C K. On Reich's Strong Convergence Theorem for Asymptotically Nonexpansive Mappings in Banach Spaces [J].Nonlinear Anal, 2007, 66: 2364- 2374.
  • 5Yao Y, Chen R, Yao J C. Strong Convergence and Certain Conditions for Modified Mann Iteration [J']. Nonlinear Analysis, 2008, 68: 1687- 1693.
  • 6Xu H K. Iterative Algorithms for Non-linear Operators[J]. J Lond Math Soc, 2002, 66:240 - 256.
  • 7CLARKE F H,LEDYAEV Y S,WOLENSKI P R.Nonsmooth Analysis and Control Theory[M].Berlin:Springer,1998.
  • 8POLIQUIN R A,ROCKAFELLAR R T,THIBAULT L.Local Differentiability of Distance Functions[J].Trans Am Math Soc,2000,352:5231-5249.
  • 9NOOR M A.Projection Methods for Nonconvex Variational Inequalities[J].Optim Lett,2009(3):411-418.
  • 10NOOR M A.Some Iterative Methods for Nonconvex Variational Inequalities[J].Comput Math Model,2010,21(1):97-108.

共引文献14

同被引文献15

  • 1ANH P N.Strong Convergence Theorems for Nonexpansive Mappings and Ky Fan Inequalities [ J] .J Optim Theory Appl, 2012 (154) :303-320.
  • 2GOEBEL K, KIRK W A.Topics in Metric Fixed Point Theory [ C ]//Cambridge Studies in Advanced Math. Cambridge:Cambridge University Press, 1990.
  • 3BLUM E, OETrLI W.From Optimization and Variational Inequalities to Equilibrium Problems [ J ] .Math Stud, 1994(63) :123-145.
  • 4XU H K.Viscosity Approximation Methods for Nonexpansive Mappings[ J ] .J Math Anal Appl, 2004(298) :279-291.
  • 5MARINO G, XU H K. A General herative Method for Nonexpansive Mappings in Hilbert Spaces [ J ]. J Math Anal Appl, 2006 (318) :43-52.
  • 6ZEGEYE H, SHAHZAD N.Strong Convergence of an Iterative Method for Pseudo-contractive and Monotone Mappings [ J ] .J Glob Optim,2012(54) : 173-184.
  • 7COMBETI'ES P L, HIRSTOAGA A.Equilibrium Programming in Hilbert spaces [ J] .J Nonlinear Convex Anal ,2005 (6) :117-136.
  • 8XU H K.An herative Approach to Quadratic Optimization[ J] .J Optim Theory Appl,2003(116) :659-678.
  • 9闻道君,宋树枝,龙宪军.非凸变分不等式和非扩张映象的Wiener-Hopf方法[J].云南大学学报(自然科学版),2012,34(1):5-8. 被引量:4
  • 10龚黔芬,闻道君.非凸变分不等式和Wiener-Hopf方程的逼近方法[J].西南师范大学学报(自然科学版),2012,37(2):34-37. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部