期刊文献+

低指纹密度下分段式高精确度室内定位方法 被引量:5

Segmented high accuracy indoor positioning under low fingerprint density
下载PDF
导出
摘要 针对室内环境中传统定位方法在大定位区域、低指纹密度下定位精确度低、计算复杂度高的问题,提出了一种基于线性插值法和分布重叠的分段式定位方法。该方法采用传统的最近邻法进行粗定位,得到可信区域;利用线性插值法更新可信区域内指纹数据库,增加指纹密度;在可信区域内,采用基于分布重叠的指纹相似度匹配法实现精定位。实验结果表明,在低指纹密度下,该定位方法定位精确度较高,算法复杂度适中,具有一定的适用性。 Aiming at low positioning accuracy and high computational complexity of the traditional indoor positioning method under large area and low fingerprint density, a new segmented high accuracy positioning algorithm based on linear interpolation and distribution overlapping is proposed. The algorithm uses the traditional nearest neighbor method for coarse positioning, and then updates the fingerprint database in the trusted area with linear interpolation method to increase the fingerprint density. Finally, fine positioning is realized by fingerprint matching method that based on distribution overlapping. Experimental results show that, even under low fingerprint density, the proposed method can get good positioning performance with high accuracy and suitable complexity.
出处 《太赫兹科学与电子信息学报》 2014年第1期76-80,88,共6页 Journal of Terahertz Science and Electronic Information Technology
关键词 室内定位 低指纹密度 线性插值 分布重叠 指纹相似度 indoor positioning low fingerprint density linear interpolation distribution overlapping fingerprint similarity
  • 相关文献

参考文献6

二级参考文献33

  • 1朱剑,赵海,孙佩刚,毕远国.基于RSSI均值的等边三角形定位算法[J].东北大学学报(自然科学版),2007,28(8):1094-1097. 被引量:76
  • 2Munoz D, Bouchereau F, and Vargas C, et al.. Position Location Techniques and Applications[M]. Burlington, USA, Academic Press, 2009: 17-21.
  • 3Gu Y Y, Lo A, and Niemegeers I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
  • 4Mengual L, Marbn O, and Eibe S. Clustering-based location in wireless networks[J]. Expert Systems with Applications, 2010, 36(4): 7552-7561.
  • 5Brunato M and Battiti R. Statistical learning theory for location ngerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825-845.
  • 6Bahl P and Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system[C]. Proc. IEEE INFOCOM, Tel Aviv, Israel, 2000: 775-784.
  • 7Carlos K F, Inmaculada M J, and Alicia G C, et al.. Nonparametric model comparison and uncertainty evaluation for signal strength indoor location[J]. IEEE Transactions on Mobile Computing, 2009, 8(9): 1250-1264.
  • 8Chen K Y, Yang Q, and Yin J, et al.. Power-efficient access-point selection for indoor location estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(7): 877-888.
  • 9Kushki A, Plataniotis K, and Venetsanopoulos A. Intelligent dynamic radio tracking in indoor wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(3): 405-419.
  • 10Fang S H, Lin T N, and Lin P. Location fingerprinting in a decorrelated space[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 685-691.

共引文献70

同被引文献56

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部