期刊文献+

基于改进MSPCA的交通检测器故障诊断模型

Traffic Detector Fault Diagnosis Model Based on Improved MSPCA
下载PDF
导出
摘要 针对交通检测器故障诊断过程中,噪声掩盖了部分故障信息以及故障信息分布的多尺度性,提出了一种改进的多尺度主元分析(MSPCA)模型。模型首先将交通检测器数据进行分段处理,再加入改进的小波阈值除噪,对滤除噪声后的小波系数进行主元分析,最后利用二维贡献图完成故障的定位。模型应用于线圈检测器的故障诊断实验,与MSPCA及自适应主元分析相比,该模型减小了误报率和漏报率,准确率更高,抗噪能力更强。 During the process of data fault information , it is found that the fault information has a property of multi -scale, and sometimes parts of them are covered by random high frequency noise , so a model of data fault diagnosis based on improved multiscale principal component analysis (MSPCA) was presented.Firstly, an improved wavelet threshold method was joined , which was used to remove most of random high frequency noise and then improved the data confidence .Secondly , the model de-composed the reconstructed signals by principal component analysis .After this, the model finished the mission of the fault isola-tion by two-dimensional contribution plots .Finally, a case study of loop detector data fault diagnosis showed that the model had many advantages such as lower fault and failing rate , and stronger anti-noise ability .
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2014年第2期167-170,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 重庆市教委科学技术研究基金资助项目(KJ130423)
关键词 交通检测器 小波阈值除噪 多尺度主元分析 故障诊断 traffic detector wavelet threshold de -noising MSPCA fault diagnosis
  • 相关文献

参考文献9

  • 1周东华,李钢,李元.数据驱动的工业过程故障诊断技术[M].北京:科学出版社,2011:23-29.
  • 2BAKSHI B R. Muhiscale PCA with application to muh- ivariate statistical process monitoring [ J ]. Aiche Jour- nal,1998,44(7) :1596 - 1610.
  • 3ROSELL J, SUAREZ R P. A path planning for grasping operations using an adaptive PCA - based sampling method [ J ]. Autonomous Robots,2013 ( 1 ) : 1 - 10.
  • 4ALAEI H K, SALAHSHOOR K, ALAEI H K. A new integrated on - line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis [ J ]. Soft Computing,2013,17 ( 3 ) :345 - 362.
  • 5DONOHO D L. De - noising by soft - thresholding [ J ]. IEEE Transactions on Information Theory, 1995,41 (3) : 613-627.
  • 6WANG H,SONG Z. Statistical process monitoring using improved PCA with optimized sensor locations [ J ]. Journal of Process Control,2002 (12) :735 - 744.
  • 7LI Y. Fault detection and isolation based on abnormal sub - region using improved PCA [ J ]. Journal of Chemi- cal Engineering of Japan, 2004,37 (4) : 514 - 522.
  • 8DUNIA R, QIN S J, EDGAR T F, et al. Use of principal component analysis for sensor fault identification[ J ]. Com- puter and Chemical Engineering,1996(20):713-718.
  • 9胡友强,余嘉,李鹏华.数据驱动的在线MW-MSPCA故障诊断[J].重庆大学学报(自然科学版),2012,35(4):100-106. 被引量:2

二级参考文献15

  • 1CHO H W. Nonlinear feature extraction and classification of multivariate data in kernel feature space [J]. Expert Systems with Applications, 2007, 32(2): 534-542.
  • 2CHO H W. An orthogonally filtered tree classifier based on nonlinear kernel-based optimal representation of data [J]. Expert Systems with Applications, 2008, 34(2) : 1028-1037.
  • 3LU B Z, ZHAO Y H, MAO Z H. Fault diagnosis method based on moving window PCA [C]// Proceedings of the Chinese Control and Decision Conference, June 17-19, 2009. Shanghai, China: IEEE, 2009:185-188.
  • 4GAO Q, HAN M, HU S L, et al. Design of fault diagnosis system of FPSO production process based on MSPCA[C] // Proceedings of the 5th International Conference on Information Assurance and Security, Aug. 18-20, 2009. Xi'an, China: IEEE, 2009, 2: 729-733.
  • 5FACCO P, BEZZO F, BAROLO M. Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing [ J ]. Industrial & Engineering Chemistry Research, 2010, 49(5) : 2336-2347.
  • 6CHENG C Y, HSU C C, CHEN M C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes[J]. Industrial Engineering Chemistry Research, 2010, 49 ( 5 ): 2254-2262.
  • 7LEE D S, VANROLLEGHEM P A. Adaptive consensus principal component analysis for on-line batch process monitoring [ J ]. Environmental Monitoring and Assessment, 2004, 92(1-3) : 119-135.
  • 8LACHOURI A, BAICHE K, DJEGHADER R, et al. Analyze and fault diagnosis by multi-scale PCA[C]// Proceedings of the 3rd International Conference on Information and Communication Technologies, April 7- 11, 2008. Umayyad Palace, Damascus, Syria: IEEE, 2008 : 1-6.
  • 9CHEN W Y. Application of multi-scale principal component analysis and SVM to the motor fault diagnosis[C] // Proceedings of the International Forum on Information Technology and Applications, May 15-17, 2009. Chengdu, China: IEEE, 2009, 3:131-134.
  • 10GENG Z Q, ZHU Q X. Multi-scale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring [J]. Industrial & Engineering Chemistry Research, 2005, 44 ( 10 ): 3585-3593.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部