期刊文献+

基于元胞蚂蚁算法的防空靶机航路规划研究 被引量:2

Route Planning of Anti-Air Target Drone Based on Cellular-Ant Colony Algorithm
下载PDF
导出
摘要 防空靶机飞行航路设计是实现靶机有效控制,确保高效完成供靶任务的保障。通过对靶机三维航路规划模型进行分析,给出了元胞蚂蚁算法的航路规划模型的求解方法及算法实现的具体流程,并分别应用蚁群算法和元胞蚂蚁算法进行仿真实验。结果表明:元胞蚂蚁算法克服了蚁群算法收敛速度慢、陷于局部最小值的缺陷,可得到较优的航路。 The design of the flight airway of anti-air target is essential to the effective target control and the high effective completion of target supply task. Through the analysis of the three-dimensional airway design model, the solution method and corresponding algorithm flow of the cellular-ant colony algorithm is provided in this paper. The simulation experiment of the ant colony and cellular-ant colony algorithms is carried out, which shows that the cellular ant algorithm over comes the ant colony algorithm disadvantages of the slow convergence and local optima, and it is able to obtain optimal airway.
出处 《兵工自动化》 2014年第5期4-6,共3页 Ordnance Industry Automation
关键词 元胞蚂蚁算法 防空靶机 飞行航路 cellular-ant colony algorithm anti-air target flight airway
  • 相关文献

参考文献6

二级参考文献44

共引文献221

同被引文献17

  • 1刘志华.煤矿安全事故隐患的成因与消除措施分析[J].煤炭工程,2006,38(6):33-34. 被引量:8
  • 2朱刚,马良.函数优化的元胞蚂蚁算法[J].系统工程学报,2007,22(3):305-308. 被引量:18
  • 3Dorigo M,Gambardella L M. Ant Colony System:A Cooper-ative Learning Approach to the Traveling Salesman Problem[J ]. IEEE Transactions on Evolutionary Computation(S1089 -778X) ,1997,1(1):53 -66.
  • 4Marco Dorigo, Thomas Stiitzle. Ant Colony Optimization[M]. Brussels:MIT,2004.
  • 5Stom R, Price K. Differential evolution - a simple and effi-cient heuristic for for global optimization over continuousspaces[ J]. Journal of Global Optimization, 1997,11(4):341 -359.
  • 6段海滨,张祥银,徐春芳等.仿生智能计算[M].北京:科学出版社,20011.
  • 7CHENG S I,HWANG C.Optimal approximation of linear systems by a differential evolution algorithm[J].IEEE Transactions on Systems,Man and Cybernetics:A,2001,31(6):698-707.
  • 8GUO Suchang,HUANG Hongzhong,WAND Zhonglai,et al.Grid service reliability modeling and optimal task scheduling considering fault recovery[J].IEEE Transactions on Reliability,2011,60(1):263-274.
  • 9苏海军,杨煜普,王宇嘉.微分进化算法的研究综述[J].系统工程与电子技术,2008,30(9):1793-1797. 被引量:54
  • 10贺耀宜.煤矿入井人员岗前培训考试系统的设计[J].工矿自动化,2012,38(1):8-10. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部