期刊文献+

高速风洞等离子体流动控制实验技术研究 被引量:2

Research on the experimental technology of plasma active flow control in high speed wind tunnel
下载PDF
导出
摘要 针对开展等离子体高速流动控制研究的技术需求,通过专用模型及实验机构设计、绝缘密封走线、多层电磁屏蔽等技术手段,建立了一套适用于高速风洞的等离子体流动控制系统,提出了等离子体高速流动控制风洞实验的技术规范和运行策略,并初步探索了等离子体激励对二元翼型绕流的控制规律。采用该技术后,解决了高压电缆的绝缘、密封走线问题,模型与实验机构的感应电压减小90%以上。风洞实验结果表明:实验系统运行稳定,实验数据可靠,等离子体激励对Ma=0.2的流动可实现有效控制;施加等离子体激励后,NACA0012翼型的流动分离明显减弱,升力增大,阻力减小,临界失速迎角增大2°,最大升力系数增大4%,总体气动性能得到显著提升。 In view of the technical requirements for the research on high speed flow control by plasma actuation,a set of plasma flow control system in high speed wind tunnel experiments was established through the special model and experimental installation design,sealed insulation alignment and multi-layer electromagnetic shielding techniques,then the technical specification and operation strategy were proposed for high speed flow control test by plasma actuation,and the control law of plasma actuation on a two element airfoil flow was explored.After using these techniques,the insulation,sealing alignment problems of high voltage cable were solved and the induced voltage between model and experimental installation decreases by more than 90%.The wind tunnel test results show that this system operates stably and the experimental data is relia-ble.The flow of Ma=0. 2 can be controlled effectively by plasma actuation.The flow separation of NACA0012 airfoil is weakened significantly,and its lift increases and drag decreases.In addi-tion ,the critical stall angle of attack increases by 2°and the maximum lift coefficient increases by 4% due to the actuation.As a result,the overall aerodynamic performance of NACA0012 airfoil is improved.The results of this study provide an important reference and technical support for the further research on high speed flow control by plasma actuation.
出处 《实验流体力学》 CAS CSCD 北大核心 2014年第2期27-31,44,共6页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金资助项目(51107101) 总装预研基金(9140C42010212) 航空科学基金(2013ZD53057)
关键词 风洞实验 流动控制 等离子体 高速风洞 实验技术 wind tunnel experiment flow control plasma high speed wind tunnel experimen-tal technology
  • 相关文献

参考文献13

  • 1孙宗祥.等离子体减阻技术的研究进展[J].力学进展,2003,33(1):87-94. 被引量:36
  • 2Post Martiqua L, Greenwade Stephen L, Yah Matthew H, et al. Effects of an aerodynamic plasma actuator on an HSNLF Airfoil [C]. AIAA 2007-638, 45th AIAA Aerospace Sciences Meeting and Exhibit, 8-11 January 2007.
  • 3Wang Jianlei, Li Huaxing, Liu Feng, et al. PIV study on fore body vortex cores under plasma actuations[C]. AIAA 2010- 1087, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4-7 Jan 2010, Orlando, Florida.
  • 4Roth J R, Dai X. Optimization of the aerodynamic plasma actuator as an electro hydrodynamic (EHD) electrical device [C]. AIAA 2006-1203, 44th AIAA Aerospace Sciences Meeting and Exhib- it, Reno, Nevada, 2006.
  • 5Mehul P Pater, T Teny Ng, Srikanth Vasudevan. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle [C]. AIAA 2006 3495, 3rd AIAA Flow Control Conference, San Francisco, California, 2006.
  • 6Thomas F O, Kozlov A, Corke T C. Plasma actuators for land ing gear noise reduction[C]. AIAA 2005-3010, Monterey: A merican Institute of Aeronautics and Astronautics, 2005.
  • 7Kriegseis J, Schwarz C, Duchmann A, et al. PIV-based estima- tion of DBD plasma-actuator force terms[C]. AIAA 2012 0411, 36th Aerospace Sciences Meeting and Exhibit, Nashvillle, Ten- nessee, USA, 2012.
  • 8Mullins J. Will plasma revolutionize aircraft design[J]. Space Daily, 2000-10-28.
  • 9李应红,梁华,马清源,吴云,宋慧敏,武卫.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J].航空学报,2008,29(6):1429-1435. 被引量:72
  • 10李应红.航空等离子体动力学与技术的发展[J].航空工程进展,2011,2(2):127-132. 被引量:18

二级参考文献87

共引文献153

同被引文献35

  • 1陈国定,明晓.后台阶流动控制[c]//第十四届研究生学术会议论文集.南京:南京航空航天大学,2012:85-92.
  • 2Eaton J K, Johnston J P. A review of research on subsonic tur- bulent flow reattaehment[J]. AIAA Journal, 1981, 19 (9) 1093-1099.
  • 3Yoshioka S, Obi S, Masuda S. Turbulence statistics of periodi- cally perturbed separated flow over backward facing step[J]. International Journal of Heat and Fluid Flow, 2001, 22 (4): 393-401.
  • 4周宁,潘狲,王晋军.后向台阶分离剪切层转捩特性的实验研究[C].第八届海峡两岸航空航天学术研讨会,2012:134-141.
  • 5Spazzini P G, Iuso G, Onorato M, et al. Unsteady behavior of back facing step flow[J]. Journal of Experiments in Fluid Me- chanics, 2001, 30(5): 551-561.
  • 6Gupta A D, Zhao P F, Roy S. Plasma assisted turbulent flow separation control over a backward facing step[R]. AIAA- 2016-0454, 2016.
  • 7Chun S, Liu Y Z, Sung H J. Wall pressure fluctuations of a turbulent separated and reattaching flow affected by an unsteady wake[J]. Journal of Experiments in Fluid Mechanics, 2004, 37(4) .. 531-546.
  • 8Healey J V. Control of turbulent flow on a backward facing step[R]. AIAA 1992-0066, 1992.
  • 9Tian Q Q, Corson D, Baker J P. Application of vortex genera- tors to wind turbine blades[R]. AIAA-2016-0518, 2016.
  • 10Park H, Jeon W P, Choi H, eta[. Mixing enhancement behind a backward facing step using tabs[J]. Physics of Fluids, 2007, 19 (10).. 103-105.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部