期刊文献+

基于EnMAP-Box的遥感图像分类研究 被引量:7

Remote Sensing Image Classification by EnMAP-Box Model
下载PDF
导出
摘要 采用2007年6月云南省勐腊县TM遥感数据,利用EnMAP-box进行了支持向量机的图像分类研究,以网格搜索法寻找最优参数,在设定的范围内,求得了最优C和g参数,用此参数进行支持向量机的遥感图像土地覆盖分类。结果表明:SVM方法较最大似然分类方法具有较高的分类精度,特别是阔叶林和橡胶林的精度明显优于最大似然分类方法;对于面积较小的次要类型,2种分类方法的精度基本保持一致;SVM的总体精度相对于最大似然分类提高了11.9%。 Image classification of the TM remote sensing data of Mengla County,Yunnan Province in June of 2007 was conducted by EnMAP-box model with the support vector machine (SVM),attempting to search for the optimal parameters by grid search.The optimal C and g parameters were obtained within a set range,and the land cover classification was done by SVM with the optimized parameters and the remote sensing image.The results showed that the classification accuracy of SVM classifier was higher than that of the regular Maximum Likelihood Classifier (MLC),especially for the broadleaved forests and rubber plantations.The classification accuracy of the two methods would be similar for smaller secondary land types.Comparatively speaking,the overall accuracy of the SVM was 1 1 .9% higher than that of MLC.
出处 《西南林业大学学报(自然科学)》 CAS 2014年第2期67-71,共5页 Journal of Southwest Forestry University:Natural Sciences
基金 国家公益性行业科研专项(200904045)资助 国家自然基金项目(31260156)资助
关键词 支持向量机 EnMAP—box 网格搜索法 遥感图像分类 support vector machine (SVM) EnMAP-box Model grid search remote sensing image classification
  • 相关文献

参考文献11

二级参考文献32

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2刘淳安,杨建宏.基于实数编码的多种群演化遗传算法[J].宝鸡文理学院学报(自然科学版),2005,25(2):85-87. 被引量:2
  • 3王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 4Gunn R. Support vector machines for classification and regression. Technical Report of University of Southamption,1998.
  • 5Lin Tienlin, Lin Chihjen. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, http ://www. csie. ntu. edu. tw/-cjlin/. 2003.
  • 6Chang Chihchung , Lin Chihjen. LIBSVM: a library for support vector machines. Last updated: February, http://www, csie. ntu. edu. tw/- ejlin/libsvm. 2009.
  • 7Hsu Chihwei, Chang Chihehung, Lin Chihjen. A practical guide to support vector classieation, http://www, esie. ntu. edu. tw/- cjlin/papors/guide/guide, pdf. 2001.
  • 8钱英凯.基于模式识别技术的雷达辐射源分类识别方法研究[D].哈尔滨:哈尔滨工程大学,2006.
  • 9Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
  • 10Vapnik V N.Statical Leaming Theory [M].New York:John Wiley & Sons lnc,1998.

共引文献2553

同被引文献81

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部