期刊文献+

求解磁流体过非线性伸缩薄板的变分—Adomian迭代方法(英文)

A Variational-Adomian Iteration Method for Solving the MHD Flow over a Nonlinear Stretching Sheet
下载PDF
导出
摘要 基于变分迭代方法和Adomian多项式,提出求解非齐次常微分方程初值问题的一种变分—Adomian迭代法(VAIM),并且把它应用于求解磁流体(MHD)边界层流对应初值问题的级数解.通过Padé近似值和几何轨迹对所得结果与已有解进行比较,显示该方法是非常有效的,并且能够适用于其它非线性边界层问题. Based on the variational iteration method and the Adomian's polynomials, a variational-Adomian iteration method (VAIM) for solving the initial value problems for the nonhomogeneous ordinary differential equations is presented and is applied to solving the series solution for an initial value problem of the magnetohydrodynamic(MHD) boundary layer flow. The obtained results are compared through the Pad6 approximation and the geometrical behavior with the existing solution, which reveals that the proposed method is very effective and can be used for other nonlinear boundary layer problems.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期231-238,共8页 Journal of Inner Mongolia University:Natural Science Edition
基金 Supported by the Research Project of China Scholarship Council(No.201208155076) the Natural Science Foundation of Inner Mongolia(No.2013MS0118) the College Science Research Project of Inner Mongolia(No.NJZZ12182,No.NJZY13268)~~
关键词 磁流体边界层 变分迭代方法 Adomian多项式方法 级数解 Pad6近似值 MHD boundary layer variational iteration method Adomian's poly- nomials method series solution Pad6 approximation
  • 相关文献

参考文献21

  • 1Adomian G. Solving Frontier Problems of Physics:The Decomposition Method [M]. Boston:Kluwer Academic Publishers, 1994.
  • 2Bluman G W, Kumei S. Symmetries and Differential Equations [M]. New York : Springer, 1989.
  • 3He J H. Variational iteration method-a kind of non linear analytical technique: some examples[J]. Internat J Non-linear Mech, 1999,34(4): 699-708.
  • 4Liao S J. Beyond perturbation: introduction to the homotopy analysis method [M]. Boca Raton: Chapman Hall/ CRC Press, 2003.
  • 5Bluman G W. Applications of the general similarity solution of the heat equation to boundary value problems[J]. Quarterly Appl Ath , 1974,31:403-415.
  • 6Kovalev V F. Lie algebra of renormalization group admitted by initial value problem for Burgers equation[J]. Lie Group and Their Applications, 1994,1 (2): 104-120.
  • 7He J H. Homotopy perturbation technique[J]. Cornput Eth Ppl Ech Ng ,1999,178(3-4) :257-262.
  • 8Wazwaz A M. A reliable modification of Adomian decomposition method[J]. Appl Ath Om put, 1999,102:77-86.
  • 9Hayat T, Hussain Q,Javed T. The modified decomposition method and Pade approximants for the MHD flow over a non-linear stretching sheet[J]. Nonlinear Analysis :Real World Applications ,2009,10: 966-973.
  • 10Ghotbi A R. Homotopy analysis method for solving the MHD flow over a non-linear stretching sheet[J]. Commun. Nonlinear Sci Umer Imulat, 2009,14 : 2653-2663.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部