摘要
刻画了经典函数Banach空间Lp[0,1]的左右极限空间Lp-0[0,1]和Lp+0[0,1]空间,发现Lp-0[0,1]是不可赋范的局部凸的可分的Fréchet空间,Lp+0[0,1]是不可度量的有界完备的局部凸的桶的Hausdorff空间.
In classical function mal and is a loca a vector space,the left limit space L^p-0[0,1] and right limit space L^p+0[0,1] of the Banach spaces about L^p[0,1] are described. It is found that L^p-0[0,1] is not norlly convex separated Frechet space,L^p+0[0,1] is not metric and is a bounded cornplete bornological locally convex Hausdorff space.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第3期239-244,共6页
Journal of Inner Mongolia University:Natural Science Edition
基金
内蒙古自然科学基金资助项目(No.200208020101)
关键词
极限空间
局部凸
局部有界
limit space
locally convex
locally bounded