期刊文献+

谷氨酸棒杆菌生产琥珀酸的代谢工程研究进展

Progress in metabolic engineering of Corynebacterium glutamicum for succinate production
原文传递
导出
摘要 琥珀酸是一种具有重要应用价值的四碳平台化合物。微生物法发酵生产琥珀酸以其社会、环境和经济优势展现出良好的发展前景。谷氨酸棒杆菌被广泛应用于氨基酸、核苷酸等高附加值化学品的工业化生产,在厌氧条件下细胞处于生长停滞状态,但仍能高效利用碳源合成有机酸,通过代谢工程改造的谷氨酸棒杆菌有望成为理想的琥珀酸生产菌株。结合近年来谷氨酸棒杆菌生产琥珀酸取得的最新成果,本文综述了构建高产琥珀酸工程菌株的代谢工程策略、底物的扩展利用,并展望了将来的研究方向。 Succinic acid is an important four-carbon platform compound that is widely applied in the pharmaceutical, agricultural and food industry. Biological processes for succinic acid production show a good prospect for its social, environmental and economic benefits. Corynebacterium glutamicum is broadly used for industrial production of value-added chemicals such as amino acid and nucleotide. Under anaerobic conditions, C. glutamicum cell growth is arrested, but the cells retain the capability to metabolize sugars to various organic acids efficiently. It is thus becoming a desired succinate-production strain by means of metabolic engineering. Combining with the latest achievements of succinic acid production with C. glutamicum, this mini-review summarized the metabolic engineering strategies of constructing an efficient succinate-production strain, the expansions of substrate utilization, and the prospects of future research.
出处 《微生物学通报》 CAS CSCD 北大核心 2014年第5期943-949,共7页 Microbiology China
基金 国家973计划项目(No.2011CBA00804 2012CB725203) 天津市自然科学基金项目(No.12JCYBJC12900) 教育部博士点基金项目(No.20100032120014)
关键词 谷氨酸棒杆菌 琥珀酸 代谢工程 底物利用 Corynebacterium glutamicum Succinic acid Metabolic engineering Substrates utilization
  • 相关文献

参考文献38

  • 1Cheng KK, Zhao XB, Zeng J, et al. Biotechnological production of succinic acid: current state and perspectives[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(3): 302-318.
  • 2Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited[J]. Green Chemistry, 2010, 12(4): 525-554.
  • 3Wilke D. What should and what can biotechnology contribute to chemical bulk production[J]. FEMS Microbiology Reviews, 1995, 16(1995): 89-100.
  • 4Zou W, Zhu LW, Li HM, et al. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618[J]. Microbial Cell Factories, 2011, 10: 87-116.
  • 5Bretz K, Kabasci S. Feed-control development for succinic acid production with Anaerobiospirillum succiniciproducens[J]. Biotechnology Bioengineering, 2012, 109(5): 1187-1192.
  • 6Lee JW, Lee SY. Proteome-based physiological analysis of the metabolically engineered succinic acid producer Mannheimia succiniciproducens LPK7[J]. Bioprocess and Biosystems Engineering, 2010, 33(1): 97-107.
  • 7Thakker C, San KY, Bennett GN. Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions[J]. Bioresoure Technology, 2013, 130: 398-405.
  • 8Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate[J]. Applied and Environmental Microbiology, 2012, 78(9): 3325-3337.
  • 9Litsanov B, Kabus A, Broeker M, et al. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum[J]. Microbial Biotechnology, 2012, 5(1): 116-128.
  • 10Dominguez H, Nezondet C, Lindley ND, et al. Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction[J]. Biotechnology Letters, 1993, 15(5): 449-454.

二级参考文献24

  • 1Wyman C E. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnology Progress, 2003, 19(2) : 254-262.
  • 2Jeffries T. Utilization of xylose by bacteria, yeasts, and fungi. Pentoses and Lignin, 1983.1-32.
  • 3McMillan J D Boynton B L. Arabinose utilization by xylose- fermenting yeasts and fungi. Applied Biochemistry and Biotechnology, 1994, 45( 1 ) : 569-584.
  • 4Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Current Opinion in Microbiology, 2008, 11 (2) : 87- 93.
  • 5Kalinowski J, Bathe B, Barrels D, et al. The complete Corynebactefium glutamicum ATCC 13032 genome sequence and its impact on the production of 1-aspartate-derived amino acids and vitamins. Journal of Bioteehnology, 2003, 104 ( 1-3 ) : 5- 25.
  • 6Yukawa H, Omumasaba C A, Nonaka H, et al. Comparative analysis of the Corynebacterium glutamicum grou Pand complete genome sequence of strain R. Microbiology, 2007, 153 (4) : 1042-1058.
  • 7Blombach B, Seibold G M. Corynebacterium glutamicum and engineering of 1-lysine production and Biotechnology, 2010, 86(5) Carbohydrate metabolism in applications for the metabolic strains. Applied Microbiology : 1313-1322.
  • 8Kawaguchi H, Vertes A A, Okino S, et al. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2006, 72 (5) : 3418- 3428.
  • 9Lawlis V, Dennis M, Chen E, et al. Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. Applied and Environmental Microbiology, 1984, 47 ( 1 ) : 15-21.
  • 10Song S, Park C. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. Journal of Bacteriology, 1997, 179(22):7025-7032.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部