期刊文献+

Hadoop下并行BP神经网络骆马湖水质分类 被引量:1

Based on Parallel BP Neural Network of Classification on Water Quality of Luoma Lake Under Hadoop
下载PDF
导出
摘要 研究借助云的计算向数据迁移机制及MapReduce并行处理海量数据的优势,解决BP神经网络在处理大规模样本数据时计算量大、网络训练时间长的瓶颈问题.构建了影响骆马湖水质的多污染因素评价网络模型,在Hadoop下应用并行BP网络算法,实现了对骆马湖水质分类挖掘,挖掘分析结果对骆马湖水质优化及生态修复具有决策支持性意义. Research the advantage of using the mechanism of computing to data migration and MapReduce parallel processing of massive data,to solve the bottlenecks problem on large amount of computing and network training time when the BP neural network in dealing with a large sample data. Its constructed water quality evaluation model based on the pollution influence factors of Luoma Lake and mined the water quality classification of Luoma Lake by applied the parallel BP algorithm under Hadoop. Mining analysis results is meaningful of decision support for the water quality optimization and ecological remediation of Luoma Lake.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期52-56,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 科技部国家中小企业创新基金(11C26213204533) 徐州市科技计划(XF11C052) 住房与城乡建设部科学技术计划(2011-K6-27)
关键词 骆马湖水质分类 并行BP神经网络 Hadoop water quality of Luoma Lake Hadoop parallel BP neural network
  • 相关文献

参考文献11

  • 1周蓉蓉,孙英兰.遗传神经网络在海水水质综合评价的应用[J].海洋湖沼通报,2009(3):167-173. 被引量:11
  • 2刘华元,袁琴琴,王保保.并行数据挖掘算法综述[J].电子科技,2006,19(1):65-68. 被引量:15
  • 3李会娜,周根宝.基于BP神经网络并行算法的研究[J].内蒙古农业大学学报(自然科学版),2011,32(4):286-289. 被引量:4
  • 4朱晨杰,杨永丽.基于MapReduce的BP神经网络算法研究[J].微型电脑应用,2012,28(10):9-12. 被引量:12
  • 5Sebastian Richly, Georg Pueschel, Dirk Habic. MapReduce for scalable neural nets training [ C ]//2010 IEEE 6th World Congress on Services. Los Alamitos : IEEE Computer Society, 2010 : 99-106.
  • 6Sitalakshmi Venkatraman, Siddhivinayak Kulkarni. MapReduce neural network framework for efficient content based image retrieval from large datasets in the cloud [ C ]//12th International Conference on Hybrid Intelligent Systems (HIS). New York: IEEE Conference Publications,2012:64-68.
  • 7Liu Zhiqiang, Li Hongyan, Miao Gaoshan. MapReduce based backpropagation neural network over large scale mobile data [ C ]// 2010 Sixth International Conference on Natural Computation ( ICNC 2010 ). New York : IEEE Conference Publications, 2010 : 1726-1730.
  • 8国家环境保护总局 国家质量监督检验检疫总局.GB3838-2002地表水环境质量标准[S].北京:中国环境科学出版社,2002..
  • 9王凯.MapReduce集群多用户作业调度方法的研究与实现[D].国防科学技术大学,2010.11.
  • 10TomWhite.Hadoop权威指南[M].北京:清华大学出版社,2010.

二级参考文献24

共引文献229

同被引文献18

  • 1崔德光,吴淑宁,徐冰.空中交通流量预测的人工神经网络和回归组合方法[J].清华大学学报(自然科学版),2005,45(1):96-99. 被引量:37
  • 2徐启华,杨瑞.支持向量机在交通流量实时预测中的应用[J].公路交通科技,2005,22(12):131-134. 被引量:21
  • 3尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件,2006,23(2):32-33. 被引量:31
  • 4MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 5SMITH B L, DEMESKY M J. Traffic flow forecasting: comparison of modeling approaches [J]. Journal of Transportation Engineering, 1997, 123(4): 252-265.
  • 6朱学明.基于神经网络的短时交通流预测方法的研究与应用[D/OL].兰州:兰州理工大学,2013[2013-10-30].http://xueshu.baidu.com/s?wd=paperuri%3A%28cccfl1993959c64fobOfa9321a680311%29&filter=sclong_sign&tn=SE_xueshusource一2kduw22v&sc_vurl=http%3A%2F%2Fd.wanfangdata.corn.cn%2FThesis%2FY2335877&ie-utf-8.
  • 7ZHAO J Y, J'IA L, WANG X Q. The forecasting model of urban traffic flow based on parallel RBF neural network [C]//The Intemeational Conference on Intelligent Computing and Applications, April 4-6, 2015, Wuhan, China. [$.l.:s.n.], 2005: 515-520.
  • 8BREIMAN L, Bal~ing predictors [J], Machine Learning, 1996, 24(2): 123-140.
  • 9CONNOLLY J F, GTANGER E, SABOURIN Ro Dynamicmulti-objective evolution of classifier ensembles for video face recognition [J]. Applied Soft Computing, 2013, 13 (6): 3149-3166.
  • 10SAUX B L, SANFOURCHE M. Robust vehicle categorization from aerial images by 3d-template matching and multiple classifier system[C]//The 7th International Symposium on Image & Signal Processing & Analysis, September 4-6, 2011, Dubmvnik, Croatia. New Jersey: IEEE Press, 2011: 466-470.

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部