期刊文献+

改进的最小交叉Tsallis熵的小目标声呐图像分割 被引量:4

Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target
下载PDF
导出
摘要 利用一维属性直方图改进交叉Tsallis熵,在此基础上提出了一种基于一维属性直方图的对称最小交叉Tsallis熵水下小目标声呐图像分割方法。该方法的主要步骤是:①抑制水下小目标声呐图像的散斑噪声;②根据图像像素的灰度值和该像素邻域的灰度平均值的大小建立属性集,在属性集上建立与该属性集约束对应的一维属性直方图;③根据一维属性直方图的对称交叉最小Tsallis熵法确定灰度二值化阈值;④对二值化后的图像去除孤立区。实验结果表明:该方法适用于直方图为复杂非双峰形状的水下小目标声呐图像,而且与现有的属性直方图上的一维最大熵阈值化法比较,具有更强的抗噪能力。 A segmentation method on the sonar image of a small underwater target is proposed. In this method, the gray-level threshold for segmentation is acquired via the minimum symmetric Tsallis cross entropy that is based on one-dimensional bound histogram. In this method, first, the speckle noise of the sonar image is suppressed. Second, the bound set is constructed according to the restriction in the gray-level values of both pixels and their neighborhood averages, and the one- dimensional bound histogram corresponding to that bound set is established. Third, the gray-level threshold for segmentation is determined according to the minimum symmetric Tsallis cross entropy based on the one-dimensional bound histogram. Finally, the isolated areas in the threshold image are removed. Experimental results show that the proposed method is well adequate for the images with a nonideal bimodal histogram; it has better antinoise performance than the existing methods based on the entropy of the one-dimensional bound histogram.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第3期834-839,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(41076060) 吉林省自然科学基金项目(20130101056JC) 内蒙古大学高层次人才引进科研启动基金项目(135123)
关键词 图像处理技术 声呐图像 图像分割 属性直方图 阈值 image processing technology sonar image image segmentation bound histogramentropy threshold
  • 相关文献

参考文献14

  • 1Pun T. A new method for grey-level picture thresh- olding using the entropy of the histogram[J]. Signal Process, 1980, 2 (3): 223-237.
  • 2KapurJ N, SahooPK, WongAKC. Anewmeth- od for gray-level picture thresholding using the en- tropy of the histogram [J]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273- 285.
  • 3Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision, Graphics and Image Process, 1989, 47 (1): 22-32.
  • 4Li C H, Lee C K. Minimum cross entropy threshol- ding[J]. Pattern Recognition, 1993, 26 (4): 617- 625.
  • 5Brink A D, Pendock N E. Minimum cross-entropy threshold selection[J]. Pattern Recognition, 1996, 29(1): 179-188.
  • 6Pal N R. On minimum cross-entropy thresholding[J]. Pattern Recognition, 1996, 29(4): 575-580.
  • 7唐英干,邸秋艳,关新平,刘福才.基于最小Tsallis交叉熵的阈值图像分割方法[J].仪器仪表学报,2008,29(9):1868-1872. 被引量:23
  • 8吴一全,沈毅,刚铁,吉玚,于素芬.基于二维对称Tsallis交叉熵的小目标图像阈值分割[J].仪器仪表学报,2011,32(10):2161-2167. 被引量:17
  • 9Portes de Albuquerque M, Esquef I A, Gesualdi Mello A R, et al. Image thresholding using Tsallis entropy [J]. Pattern Recognition Letters, 2004 (25):1059-1065.
  • 10Sahoo P K, Arora G. Image thresholding using two- dimensional Tsallis-Havrda-Charvat entropy [J]. Pattern Recognition Letters, 2006, 27 (6) : 520- 528.

二级参考文献47

共引文献78

同被引文献30

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部