期刊文献+

武器目标分配问题的离散差分进化算法 被引量:16

A Discrete Differential Evolution Algorithm for the Weapon Target Assignment Problem
下载PDF
导出
摘要 提出一种新的求解静态武器目标分配问题的离散差分进化算法.采用整数排列建立武器–目标分配对,作为离散差分进化算法的初始个体;并通过取模运算对溢出取值范围的解向量进行修正,将其转化到解的搜索区域内,从而对差分变异算子进行设计.同时,提出相应的交叉策略,得到可行的武器目标分配对.在交叉过程中,保留目标向量与试验向量中相同的分配对,得以很好地利用上一代的分配结果.在删除重复数和重新插入整数时,为了避免倾向性,生成随机排列,保证对数据处理的公平性.实验结果表明,提出的离散差分进化算法在收敛性和求解质量方面均优于另外2种典型的离散差分进化算法,很好地实现了武器目标分配问题的有效求解. A new discrete differential evolution algorithm was proposed to solve the static weapon target assignment (SWTA) problem. Firstly, the integer permutation was applied to building weapon-target assignment pair. Then, the differential mutation was designed by means of the modular operator to restrict the bound offending solutions into the search space. At the same time, the corresponding crossover strategy was presented to acquire the feasible solutions. In the process of crossover, the same assignment pairs of the objective and trial vectors were reserved for utilizing the results of the previous generation. In order to avoid the bias, a random permutation was generated to assure the fairness in the process of deleting repeat integers and reinserting new integers. The experimental results demonstrate that the new DDE is superior to the other two typical DDEs in terms of convergence property and solution quality and solves the static weapon target assignment problem.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第3期289-293,321,共6页 Transactions of Beijing Institute of Technology
基金 国家杰出青年科学基金资助项目(60925011) 国家自然科学基金委国际(地区)合作项目(61120106010) 山西省青年科技研究基金资助项目(2012021012-4) 太原科技大学校青年基金资助项目(20113003)
关键词 离散差分进化算法 差分变异 交叉 武器目标分配 discrete differential evolution algorithm differential mutation crossover weapontarget assignment
  • 相关文献

参考文献15

  • 1Storn R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341 -359.
  • 2Xin B, Chen J, Zhang J, et al. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy[J]. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 2012,42(5) :744 - 767.
  • 3Zhang C M, Chen J, Xin B. Distributed memetie differential evolution with the synergy of Lamarckian and Baldwinian learning[J]. Applied Soft Computing, 2013,13(5) :2947 - 2959.
  • 4Onwubolu G C. Scheduling flow shops using differential evolution algorithm [ J ]. European Journal of Operational Research, 2006,171(2) :674 - 692.
  • 5Onwubolu G C. Design of hybrid differential evolution and group method of data handling networks for modeling and prediction [ J ]. Information Sciences, 2008,178(18) :3616 - 3634.
  • 6Qian B, Wang L, Hu R, et al. A hybrid differential evolution method for permutation flow-shop scheduling [J]. The International Journal of Advanced Manufacturing Technology, 2008,38(7 - 8): 757 - 777.
  • 7Onwubolu G C, Davendra D. Differential evolution: a handbook for global permutation-based combinatorial optimization[M]. Poland: Springer, 2009.
  • 8Manne A S. A target-assignment problem [ J ]. Operations Research, 1958,6(1) :346 - 351.
  • 9Braford J C. Determination of optimal assignment of a weapon system to several targets[R]. Dallas, Texas: Vought Aeronautics, 1961.
  • 10Day R H. Allocating weapons to target complexes by means of nonlinear programming [J]. Operations Research, 1996,14(6) :992 - 1013.

同被引文献146

引证文献16

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部