期刊文献+

Structural, Optical, and Ferroelectric Behaviors of Cu_(1-x)Li_xO(0≤x≤0.09) Nanostructures

Structural,Optical,and Ferroelectric Behaviors of Cu_(1-x)Li_xO(0≤x≤0.09) Nanostructures
原文传递
导出
摘要 We report structural, optical, and ferroelectric behaviors of lithium-doped copper oxide (CU1-xLixO with x = 0.0, 0.05, 0.07, and 0.09) nanostructures synthesized by hydrothermal method. The XRD pattern indicates the pure phase formation of CuO without any impurity, and the crystallite size is found to be increases for x = 0-0.07 and decreases for x = 0.09. FESEM analysis shows that the average size of Cul xLixO nanostructures increases with the increasing the Li-doping concentrations up to 7% and then decreases for 9% Li doping concentration. Moreover, Raman and photoluminescence spectrum also confirm the phase formation of CuO. A significant reduction in optical band gap is observed up to x = 0.07, and then band gap increases for x ~ 0.09 due to segregation of the impurities on the surface or grain boundaries, which may suppress the grain growth and results the enhancement in optical band gap. Moreover, a weak ferroelectricity is observed in CuO nanostructures for pure and 9% Li doping through polarization versus electric field (P- E). We report structural, optical, and ferroelectric behaviors of lithium-doped copper oxide (CU1-xLixO with x = 0.0, 0.05, 0.07, and 0.09) nanostructures synthesized by hydrothermal method. The XRD pattern indicates the pure phase formation of CuO without any impurity, and the crystallite size is found to be increases for x = 0-0.07 and decreases for x = 0.09. FESEM analysis shows that the average size of Cul xLixO nanostructures increases with the increasing the Li-doping concentrations up to 7% and then decreases for 9% Li doping concentration. Moreover, Raman and photoluminescence spectrum also confirm the phase formation of CuO. A significant reduction in optical band gap is observed up to x = 0.07, and then band gap increases for x ~ 0.09 due to segregation of the impurities on the surface or grain boundaries, which may suppress the grain growth and results the enhancement in optical band gap. Moreover, a weak ferroelectricity is observed in CuO nanostructures for pure and 9% Li doping through polarization versus electric field (P- E).
机构地区 Department of Physics
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第2期306-312,共7页 金属学报(英文版)
关键词 CuO nanostructure Optical properties PL and Raman spectroscopy CuO nanostructure Optical properties PL and Raman spectroscopy
  • 相关文献

参考文献29

  • 1M. Sahooli, S. Sabbaghi, R. Saboori, Mater. Lett. 81, 169 (2012).
  • 2P. Ball, G. Li, Nature 355, 761 (1992).
  • 3N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, A. Mondal, Mater. Lett. 65, 3248 (2011).
  • 4S.K. Maji, N. Mukherjee, A. Mondal, B. Adhikary, B. Karrnakar, J. Solid State Chem. 183, 1900 (2010).
  • 5G. Narsinga Rao, Y.D. Yao, J.W. Chen, J. Appl. Phys. 105, 093901 (2009).
  • 6A. EI-Trass, H. Elshamy, I. EI-Mehasseb, M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012).
  • 7F. Bayansal, H.A. Cetinkara, S. Kahraman, H.M. Cakmak, H.S. Guder, Ceram. lnt. 38, 1859 (2012).
  • 8S. Zaman, M.H. Asif, A. Zainelabdin, G. Amin, O. Nur, M. Willander, J. Electroanal. Chem. 662, 421 (2011).
  • 9M. Wan, D. Jin, R. Feng, L. Si, M. Gao, L. Yue, Inorg. Chem. Commun. 14, 38 (2011).
  • 10S. Jana, S. Das, N.S. Das, K.K. Chattopadhyay, Mater. Res. Bull. 45, 693 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部