期刊文献+

基于人工神经网络的多维离群点检测算法

Outlier detecting algorithm for multidimensional datasets based on ANN
下载PDF
导出
摘要 为了更加智能地检测离群点,克服传统离群点检测算法的机械性,提升多维数据集合离群点挖掘效率,在传统的离群数据挖掘算法的基础上,提出了一种基于人工神经网络的多维离群点检测算法。仿真实验结果表明,该算法具有对用户依赖性小、检测精度高的优点,为检测离群点提供了一种新的路径。 To detect outlier more intelligently, avoid the mechanical character of traditional algorithm of outlier detecting and improve the efficiency of outlier mining for multidimensional data sets, this paper proposes an algorithm of outlier detecting for multidimensional data sets based on ANN founded on the pros and cons of traditional algorithm of outlier mining. The simulation results indicate that the algorithm has the advantages of less dependent to users and higher accuracy. It opens up a new approach for the outlier detecting.
出处 《微型机与应用》 2014年第5期76-78,共3页 Microcomputer & Its Applications
关键词 人工神经网络 多维数据 智能化 熵权 ANN multidimensional data intelligentialize entropy
  • 相关文献

参考文献8

  • 1HAWKINS D M. Identification of outliers [M]. London: Chapman and Hall, 1980.
  • 2HAN J, KAMBER M, PEI J. Data mining: concepts and techniques[M]. Morgan kaufmann, 2006.
  • 3WANGLizhen,ZOULikun.Research on Algorithms for Mining Distance-Based Outliers[J].Chinese Journal of Electronics,2005,14(3):485-490. 被引量:1
  • 4SHEKHAR S, LU C T, ZHANG P. A unified approach to detecting spatial outliers [J]. Geolnformatica, 2003, 7 (2) : 139-166.
  • 5AGGARWAL C C, YU P S. Finding generalized projected clusters in high dimensional spaces[M|. ACM, 2000.
  • 6魏藜,宫学庆,钱卫宁,周傲英.高维空间中的离群点发现[J].软件学报,2002,13(2):280-290. 被引量:44
  • 7SHEKHAR S, LU C T, ZHANG P. A unified approach to detecting spatial outliers[J]. Geolnfi)rmatiea, 2003, 7 (2): 139-166.
  • 8钟义信.知识理论与神经网络[M].北京:清华人学出版社,2009.

二级参考文献27

  • 1Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. Knowledge discovery and data mining: towards a unifying framework. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 82~88.
  • 2Ng, R. T., Han, J. Efficient and effective clustering methods for spatial data mining. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 20th International Conference on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 144~155.
  • 3Ester, M., Kriegel, H.-p., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 226~231.
  • 4Zhang, T., Ramakrishnan, R., Linvy, M. BIRCH: an efficient eata clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 103~114.
  • 5Wang, W., Yang, J., Muntz, R. STING: a statistical information grid approach to spatial data mining. In: Jarke, M., Carey, M.J., Dittrich, K.R., et al., eds. Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, Greece: Morgan Kaufmann, 1997. 186~195.
  • 6Sheikholeslami, G., Chatterjee, S., Zhang, A. WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York : Morgan Kaufmann, 1998. 428~439.
  • 7Hinneburg, A., Keim, D.A. An efficient approach to clustering in large multimedia databases with noise. In: Agrawal, R., Stolorz, P.E., Piatetsky-Shapiro, G. eds. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 58~65.
  • 8Agrawal, R., Gehrke, J., Gunopulos, D., et al. Automatic subspace clustering of high dimensional data for data mining applications. In: Haas, L.M., Tiwary, A., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle, Washington, D C: ACM Press, 1998. 94~105.
  • 9Ruts, I., Rousseeuw, P. Computing depth contours of bivariate point clouds. Journal of Computational Statistics and Data Analysis, 1996,23:153~168.
  • 10Arning, A., Agrawal, R., Raghavan, P. A linear method for deviation detection in large databases. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 164~169.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部