期刊文献+

移动无线传感器网络下的采煤机定位精度 被引量:7

Positioning accuracy of shearer in mobile wireless sensor networks
下载PDF
导出
摘要 基于节点的信号强度和距离解算模型,建立局域强信号与定位子空间的对偶映射,在此基础上推导包含测距误差和锚节点误差的拓展克拉美-罗下限方程。仿真研究无线测距误差、锚节点密度和锚节点基准坐标漂移方向等多因素对采煤机定位精度的影响,并在实验室三机模型上进行测试。实验结果表明:由无线测距误差引起的采煤机定位误差占到92.9%,且沿采煤机截割方向误差分量占78.11%以上,而通过增加锚节点密度以及减少移动节点与锚节点间垂直距离能减少定位误差。实验结果与仿真结果基本一致。研究结果可为移动传感器网络下采煤机精确定位提供理论与技术支撑。 Duality mapping between local strong signal set and positioning spatial domain were established by analyzing received signal strength and distance solver model. The improved Cramer-Rao lower bound formula was derived. The effects of wireless range error, anchor nodes density and the error drift direction of anchor node reference coordinate on positioning accuracy were simulated. Shearer positioning precision under mining fleet model was preceded in laboratory. Experiment results indicate that 92.9% of positioning error is caused by low ranging accuracy, while the positioning error along the shearer cutting direction accounts for 78.11%. Furthermore, increasing the anchor node density and decreasing the vertical distance between mobile node and anchor nodes can improve positioning accuracy. The practical monitoring results are similar to the simulation ones. So, shearer positioning using wireless sensor networks can be applied for mechanized mining faces under mobile wireless sensor networks.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期428-434,共7页 Journal of Central South University:Science and Technology
基金 国家高技术研究发展计划("863"计划)资助项目(2013AA06A411) 江苏省研究生培养创新工程(CXZZ12_0925)
关键词 综采工作面 采煤机 无线传感器网络 定位精度 不确定锚节点 mechanized mining face shearer wireless sensor networks positioning accuracy uncertain anchor nodes
  • 相关文献

参考文献16

  • 1WANG Guimei, JIAO Shanlin, CHENG Guangxing. Fully mechanized coal mining technology for thin coal seam under complicated geological conditions[J]. Energy Exploration and Exploitation, 2011, 29(2): 169-177.
  • 2吴立新,汪云甲,丁恩杰,朱旺喜,张瑞新,张申,王植.三论数字矿山——借力物联网保障矿山安全与智能采矿[J].煤炭学报,2012,37(3):357-365. 被引量:242
  • 3樊启高,李威,王禹桥,范孟豹,杨雪锋.一种采用灰色马尔科夫组合模型的采煤机记忆截割算法[J].中南大学学报(自然科学版),2011,42(10):3054-3058. 被引量:31
  • 4Chehri A, Fortier P, TardifP M. UWB-based sensor networks for localization in mining environments[J]. Ad Hoe Networks, 2009, 7(5): 987-1000.
  • 5裴忠民,邓志东,巫天华,许潇.矿井无线传感器网络三阶段定位方法[J].中国矿业大学学报,2010,39(1):87-92. 被引量:15
  • 6Patwari N, Ash J N, Kyperountas S, et al. Locating the nodes cooperative localization in wireless sensor networks[J]. IEEE Signal Processing Magazine, 2005, 22(44): 54-69.
  • 7Sun M, Ho K C. Refining inaccurate sensor positions using target at unknown location[J]. Signal Processing, 2012, 92(9): 2097-2104.
  • 8LI Wenling, JIA Yingmin. Location of mobile station with maneuvers using an IMM-based cubature kalman filter[J]. IEEE Transactions on Industrial Electronics, 2012, 59( 11 ): 4338-4348.
  • 9Easton A, Cameron S A. Gaussian error model for triangulation based pose estimation using noisy landmarks[C]//IEEE International Conference on Robotics Automation and Mechatronics. Bangkok, Thailand: IEEE Press, 2006: 1-6.
  • 10Funke S, Milosavljevic N. Guaranteed-delivery geographic routing under uncertain node locations[C]//IEEE International Conference on Computer Communications. Alaska, USA: IEEE Press, 2007: 1244-1252.

二级参考文献83

共引文献333

同被引文献56

引证文献7

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部