期刊文献+

基于CV模型的CT图像分割研究 被引量:6

Study of CT Image Segmentation Based on CV Model
下载PDF
导出
摘要 由于医学图像边缘模糊、不均匀性等特点,使用传统的Chan-Vese(CV)模型方法难以达到分割要求,同时该方法存在计算量大、分割速度慢的问题。本文提出了一种基于CV模型改进的分割算法,在水平集演化迭代过程中,根据当前主动轮廓线的位置,引入图像局部灰度信息,提高了水平集能量项的有效性和该模型的收敛速度,并提出了一种关于图像序列的分割方法。实验结果表明,运用本文提出的方法能够快速、准确地提取图像中感兴趣目标,是一种较为理想的医学图像分割方法。 The medical image has the characteristics of blurred edges and heterogeneity, it is difficult to achieve the goal of segmentation using the traditional Chan-Vese model method, at the same time, the method is large amount of calculation and the speed is slow. Therefore, this paper presents an improved segmentation algorithm based on the Chan-Vese model, the convergence speed of the level set and the effectiveness of energy item are enhanced according to the current active contour and the local information of image during the iterative process, and a new segmentation method for image sequence is proposed. The experiments show that the improved Chan-Vese model can extract the object interested in the image quickly and exactly, it is an ideal method for medical image segmentation.
机构地区 北京交通大学
出处 《CT理论与应用研究(中英文)》 2014年第2期193-202,共10页 Computerized Tomography Theory and Applications
基金 国家自然科学基金(30970777)
关键词 医学图像分割 水平集方法 CV模型 medical image segmentation level set method Chan-Vese model
  • 相关文献

参考文献14

  • 1罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2010:164-165.
  • 2林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能,2002,15(2):192-204. 被引量:124
  • 3Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 4Cohen LD.On active contour models and balloons[J].CVGIP:Image Understanding,1991,53(2):211-218.
  • 5Cohen LD,Cohen I.Finite element methods for active contour models and balloons for 2-D and 3-D images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1131-1147.
  • 6Xu C,Prince J.Snakes,shapes,and gradient vector flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 7Mumford D,Shah J.Optimal approximation by piecewise smooth functions and associated variational problems[J].Communications on Pure and Applied Mathematics,1989,42(5):577-685.
  • 8Chan TF,Vese LA.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 9Vese LA,Chan TF.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
  • 10付英杰,张剑,邹翎,王凯,李柏林,吕曦,宋思思.基于改进水平集和区域生长的轮廓提取方法[J].计算机应用研究,2012,29(7):2770-2772. 被引量:6

二级参考文献45

  • 1陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:68
  • 2Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988..
  • 3罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000..
  • 4Fjφrtoft R,Lopès A,Marthon P,et al.An optimal mul-tiedge detector for SAR image segmentation[J].IEEE Trans.on Geoscience and Remote Sensing,1998,36(3):793-802.
  • 5Rahma A,Ali E.SAR images segmentation using edge information[C].ICCET 2010,chengdu,2010,4:496-499.
  • 6Fjcrtoft R,Delignon Y,Pieczyuski W,et al.Uusupervised classification of radar images using hidden markov chains and hidden markov random fields[J].IEEE Trans.on Geoscience and Remote Sensing,2003,41(3):675-686.
  • 7Deng H,Clausi D A.Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel markov random field model[J].IEEE Trans.on Geoscience and Remote Sensing,2005,43(3):528-538.
  • 8Alexander W,Peter Y,Wen Zhang,et al.IceSynth Ⅱ:Synthesis of SAR sea-ice imagery using region-based pos-terior sampling[J].IEEE Gooscience and Remote Sensing Letters,2010,7(2):348-350.
  • 9Otsu N.A threshold selection method from gray-level histogram[J].IEEE Tram.on Systems,Man,and Cybernetics,1979,9(1):62-66.
  • 10Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].International Journal of Computer Vision,1988,1(1):321-332.

共引文献165

同被引文献77

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部