期刊文献+

Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing 被引量:40

Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing
原文传递
导出
摘要 CRISPR/Cas9 uses a guide RNA (gRNA) molecule to execute sequence-specific DNA cleavage and it has been widely used for genome editing in many organisms. Modifications at either end of the gRNAs often render Cas9/gRNA inactive. So far, production of gRNA in vivo has only been achieved by using the U6 and U3 snRNA promoters. However, the U6 and U3 promoters have major limitations such as a lack of cell specificity and unsuitability for in vitro transcription. Here, we present a versatile method for efficiently producing gRNAs both in vitro and in vivo. We design an artificial gene named RGR that, once transcribed, generates an RNA molecule with ribozyme sequences at both ends of the designed gRNA. We show that the primary transcripts of RGR undergo self-catalyzed cleavage to generate the desired gRNA, which can efficiently guide sequence-specific cleavage of DNA targets both in vitro and in yeast. RGR can be transcribed from any promoters and thus allows for cell- and tissue-specific genome editing if appropriate promoters are chosen. Detecting mutations generated by CRISPR is often achieved by enzyme digestions, which are not very compatible with high-throughput analysis. Our system allows for the use of universal primers to produce any gRNAs in vitro, which can then be used with Cas9 protein to detect mutations caused by the gRNAs/CRISPR. In conclusion, we provide a versatile method for generating targeted mutations in specific cells and tissues, and for efficiently detecting the mutations generated. CRISPR/Cas9 uses a guide RNA (gRNA) molecule to execute sequence-specific DNA cleavage and it has been widely used for genome editing in many organisms. Modifications at either end of the gRNAs often render Cas9/gRNA inactive. So far, production of gRNA in vivo has only been achieved by using the U6 and U3 snRNA promoters. However, the U6 and U3 promoters have major limitations such as a lack of cell specificity and unsuitability for in vitro transcription. Here, we present a versatile method for efficiently producing gRNAs both in vitro and in vivo. We design an artificial gene named RGR that, once transcribed, generates an RNA molecule with ribozyme sequences at both ends of the designed gRNA. We show that the primary transcripts of RGR undergo self-catalyzed cleavage to generate the desired gRNA, which can efficiently guide sequence-specific cleavage of DNA targets both in vitro and in yeast. RGR can be transcribed from any promoters and thus allows for cell- and tissue-specific genome editing if appropriate promoters are chosen. Detecting mutations generated by CRISPR is often achieved by enzyme digestions, which are not very compatible with high-throughput analysis. Our system allows for the use of universal primers to produce any gRNAs in vitro, which can then be used with Cas9 protein to detect mutations caused by the gRNAs/CRISPR. In conclusion, we provide a versatile method for generating targeted mutations in specific cells and tissues, and for efficiently detecting the mutations generated.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第4期343-349,共7页 植物学报(英文版)
基金 supported by NIH R01GM068631 to Y.Z
关键词 CAS9 CRISPR DNA digestion gRNA genome genomeediting in vitro transcription RIBOZYME CAS9 CRISPR DNA digestion gRNA genome genomeediting in vitro transcription ribozyme
  • 相关文献

参考文献2

二级参考文献33

  • 1Joung JK, Sander JD. TALENs: a widely applicable technol-ogy for targeted genome editing. Nat Rev Mol Cell Biol 2012;14:49-55.
  • 2Moehle EA, Rock JM, Lee YL, et al. Targeted gene addi-tion into a specified location in the human genome using de-signed zinc fingernucleases. Proc Natl Acad Sci USA 2007;104:3055-3060.
  • 3Umov FD, Miller JC,Lee YL, et al Highly efficient endoge-nous human gene correction using designed zinc-finger nucle-ases. Nature 2005;435:646-651.
  • 4Hockemeyer D, Wang H,Kiani S, et al Genetic engineering ofhuman pluripotent cells using TALE nucleases. Nat Biotechnol2011;29:731-734.
  • 5Miller JC, Tan S, Qiao G, et al A TALE nuclease architecturefor efficient genome editing. Nat Biotechnol 2011; 29:143-148.
  • 6Chen F, Pruett-Miller SM, Huang Y,et al. High-frequency ge-nome editing using ssDNA oligonucleotides with zinc-fingernucleases. Nat Methods 2011; 8:753-755.
  • 7Bedell VM, Wang Y,Campbell JM, et al. In vivo genomeediting using a high-efficiency TALEN system. Nature 2012;491:114-118.
  • 8Makarova KS,Haft DH,Barrangou R, et al Evolution andclassification of the CRISPR-Cas systems. Nat Rev Microbiol2011;9:467-477.
  • 9Haurwitz RE, Jinek M,Wiedenheft B,Zhou K,Doudna JA.Sequence- and structure-specific RNA processing by a CRIS-PR endonuclease. Science 2010; 329:1355-1358.
  • 10Deltcheva E,Chylinski K,Sharma CM, et al. CRISPR RNAmaturation by trans-encoded small RNA and host factor RNaseIII. Nature 2011; 471:602-607.

共引文献362

同被引文献136

引证文献40

二级引证文献271

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部