期刊文献+

南极冰盖冻融的时空分析 被引量:4

Spatio-temporal analysis of Antarctic ice-sheet freeze-thaw variation
下载PDF
导出
摘要 采用改进的小波变换的南极冰盖冻融探测算法,利用微波辐射计1978~2013年的SMMR和SSM/I数据对南极冰盖冻融状况进行监测,分析了南极冰盖近34年的整体冻融时空变化特征,结果表明:从空间分布来看,南极冰盖的融化区域主要分布在南极边缘的各个冰架区,融化强度受地物覆盖类型、地理位置和海拔等因素的影响;从时间分布上来看,南极冰盖的融化面积年际变化较大,1991年的融化面积最大,为1518750km2,1999年融化面积最小,为565000km2,且融化面积的年际变化具有周期性;南极冰盖的融化具有很强的季节性,融化一般集中在11月至次年2月,在1月达到融化顶峰。 Antarctic ice-sheet freeze-thaw variation was monitored based on improved wavelet transform and microwave radiometer SMMR and SSM/I data (1978~2013), and Antarctic 34-year ice-sheet freeze-thaw spatio-temporal variety characteristics was analyzed. Melt spatial distribution showed that the majority of melt areas were located on the edge of Antarctic ice shelves. They were affected by land cover type, altitude and geographic location. The melt temporal distribution showed that the Antarctic melt-area annual variation had regularity. The surface melt area was the largest for 1518750 km2 in 1991. The surface melt area was the smallest for 565000 km2 in 1999. In addition, Antarctic ice-sheet melt varied with seasonal changes, and the snowmelt generally concentrated in November, December, January and February, and there was the largest melt extent in January.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2014年第5期1303-1309,共7页 China Environmental Science
基金 国家自然科学基金(41076129) 河南省教育厅自然科学项目(14A420003) 河南工业大学博士基金(150525)
关键词 融化探测 微波辐射计 小波变换 南极 时空变化特征 smowmelt detection microwave radiometer wavelet transform,Antarctica spatio-temporal variety characteristics
  • 相关文献

参考文献14

  • 1Wang L. Deriving spatially varying thresholds for real-time snowmelt detection from space-borne passive microwave observations [J]. Remote Sensing Letters, 2012,3(4):305 -313.
  • 2Dupont F, Royer A, Langlois A, et al. Monitoring the melt season length of the Barnes Ice Cap over the 1979-2010period using active and passive microwave remote sensing data [J]. Hydrological Processes, 2012,26(17):2643-2652.
  • 3Semmens K A, Ramage J, Bartsch A, et al. Early snowmelt events:detection, distribution, and significance in a major sub-arctic watershed [J]. Environmental Research Letters, 2013,8(1):1-11.
  • 4Tedesco M. Assessment and Development of Snowmelt Retrieval Algorithms over Antarctica from K band Space Borne Brightness Temperature (1979-2008) [J]. Remote Sensing of Environment, 2009,113(5):979-997.
  • 5Abdaati W, Steffen K. Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data [J]. Journal of Climate. 1997,10 (2):165-175.
  • 6Abdaati W, Steffen K. Greenland ice sheet melt extent: 1979 -999 [J]. Journal of Geophysical Research, 2001,106(D24):33983- 33989.
  • 7Joshi M, Merry C J, Jezek K C, et al. An edge detection technique to estimate melt extent on the Greenland ice sheet using passive microwave data. Geophysical [J]. Geophysica Research Letters, 2001,28(18):3495-3500.
  • 8Torinesi O, Fily M, Genthon C. lnterannual variability and trend of the Antarctic summer melting period from 20years of spaceborne microwave data [J]. Journal of Climate, 2003,16(7): 1047-1060.
  • 9Liu H X, Wang L, Jezek K C. Wavelet-transform based edge detection approach to derivation of snowmelt onset, end and duration from satellite passive microwave measurements [J]. International Journal of Remote Sensing, 2005,26(21):4639- 4660.
  • 10Liu H X, Wang L, Jezek K C. Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978-2004) [J]. Journal of Geophysical Research, 2006,111(F1):1- 20.

二级参考文献25

  • 1王坚,高井祥,曹德欣,孙久运.动态变形信号二进小波提取模型研究[J].中国矿业大学学报,2007,36(1):116-120. 被引量:3
  • 2乔平林,张继贤,王翠华.应用AMSR-E微波遥感数据进行土壤湿度反演[J].中国矿业大学学报,2007,36(2):262-265. 被引量:17
  • 3Liu H, Wang L, Jezek K C. Wavelet-transform based edge de- tection approach to derivation of snowmelt onset, end and dura- tion from satellite passive microwave measurements [J ]. Inter- national Journal of Remote Sensing, 2005, 26 ( 21 ) : 4639 -ZIf060 .
  • 4Liu H, Wang L, Jezek K C. Spatiotemporal variafiom of snowmelt in Antarctica dedved from satellite scanning multi- channel microwave radiometer and special sensor microwave imager data ( 1978 - 2(104) [ J ]. Journal of Geophysical Re- search, 2006,111, R)1003:1 - 20.
  • 5Wang L. Deriving spatially varying thresholds for real-time snowmelt detection from space-borne passive microwave obser- vations [ J] .Remote Sensing Letlers,2012,3 (4) :305 - 313.
  • 6Tedesco M, Abdalati W, ZwaUy H J. Persistent surface snowmelt over Antarctica ( 1987 - 2006) from 19.35 GHz brightness temperatures [J ]. Geophysical Research Letters, 2007,34,L18504:1 - 6.
  • 7Tedesco M. Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperattm (19792008) [ J] .Remote Sensing of Environment, 2009,113 (5):979-997.
  • 8Aschraft I S, Long D G. Comparison of methods for melt detec- tion over Greenland using active and passive microwave mea- surements [ J]. International Journal of Remote Sensing, 2006, 27(12) :2469 - 2488.
  • 9Takala M, Pulliainen J, Huttunen M, et al. Detecting the onset of snow-melt using SSM/I data and the self-organizing map [J ]. International Journal of Remote Sensing,2008,29 (3) : 755 - 766.
  • 10Takala M, Pulliainen J, Metsamaki S J, et al. Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007 [J ]. IDT;.F. Transaclions on Geo- science and Remote Sensing, 2009,47 ( 9 ) : 2996 - 3007.

共引文献10

同被引文献34

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部