摘要
将服务选择问题建模为带QoS约束的非线性最优化问题,并提出了一种参数自适应的改进遗传算法(IPAGA).构造了基于双曲正切函数的非线性参数变换函数,当迭代次数或种群多样性程度增加时,使遗传算法的交叉和变异概率相应地非线性递减,以保证算法的全局收敛性和收敛速度.实验结果表明:算法能够快速搜索出全局近似最优解,具有很高的有效性和可行性.
The service selection problem was modeled as a problem of nonlinear optimization with QoS (quality of service) constraints. Then, an improved parameter adaptive genetic algorithm (IPAGA) was proposed. A nonlinear parameter transforming function based on the hyperbolic tangent function was constructed, which made the crossover probability and the mutation probability decrease nonlin- early with the increasing of iterations and population diversity. Thereby, the convergence speed and the global convergence were ensured. The experimental results show that an approximate optimal re- sult can be searched out quickly. The efficiency and feasibility of our approach are demonstrated in the experimental evaluation.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第4期72-76,共5页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
总装预研基金资助项目(9140A27040413JB11407)
国家自然科学基金资助项目(61170217)
关键词
服务动态组合
遗传算法
服务选择
全局优化
服务质量约束
参数自适应
dynamic service composition
genetic algorithm
service selection
global optimization
QoS constraints
parameter adaptive