期刊文献+

缺失数据下强混合样本情形的经验似然 被引量:1

Empirical Likelihood for Strong Mixing Samples with Missing Data
下载PDF
导出
摘要 在强混合样本完全随机缺失情形,本文利用随机补足后得到的"完全样本"对总体均值进行经验似然推断,证明了经验似然比统计量的极限分布为卡方分布。 Under a strong mixing sample, as data are missing completely at random, the empirical likelihood ratio statistic for the mean of a population based on the ' complete' sample after random imputation is obtained. It is shown that the empirical likelihood ratio statistic of the mean is asymptotically x2-type distributed.
作者 李英华
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期51-56,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11201088) 广西自然科学基金资助项目(2013GXNSFAA019004 2013GXNSFAA019007 2013GXNSFBA019001) 广西教育厅科研项目(201106LX054) 广西师范大学青年基金资助项目 广西师范大学青年骨干教师成长支持计划资助项目
关键词 缺失数据 经验似然 强混合样本 missing data empirical likelihood strong mixing samples
  • 相关文献

参考文献9

  • 1OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988,75 (2):237- 249.
  • 2WANG Qi-hua,RAO J N K. Empirical likelihood-based inference in linear models with missing data[J]. Scandinavian Journal of Statistics,2002,29(3):563-576.
  • 3WANG Qi-hua,RAO J N K. Empirical likelihood-based inference under imputation for missing response data[J]. Ann Statist,2002,30(3) :896-924.
  • 4WANG Qi-hua,LINTON O, HARDLE W. Semiparametric regression analysis with missing response at random[J]. J Amer Statist Assoc, 2004,99 (466) : 334-345.
  • 5钱永江.缺失数据下m相依样本的大样本性质[J].延边大学学报(自然科学版),2009,35(3):207-210. 被引量:1
  • 6杨金英,赵培信.缺失数据下混合误差线性模型的参数估计[J].西南大学学报(自然科学版),2012,34(9):35-37. 被引量:1
  • 7CHEN Jia-hua,RAO J N K. Asymptotic normality under two-phase sampling designs[J]. Statistica Sinica,2007,17 (3):1047-1064.
  • 8YANG Shan-chao. Moment bounds for strong mixing sequences and their application[J].JMathematical Research and Exposition,2000,20(3):349-359.
  • 9邵启满.多维强混合经验过程的弱收敛[J].数学年刊:A辑,1986,7(5):547-552.

二级参考文献15

  • 1余昭平,涂冬生.m相依样本均值的Bootstrap及其随机加权逼近的收敛速度[J].高校应用数学学报(A辑),1993,8(4):396-402. 被引量:3
  • 2孙志宾,张军舰.m相依样本下均值的经验似然比置信区间[J].数学的实践与认识,2005,35(7):207-214. 被引量:3
  • 3Horton N J, Laird N M. Maximum Likelihood Analysis of Generalized Linear Models with Missing Covariates[J]. Star Meth Med Res, 1998,8(1):37- 50.
  • 4Betlo A L. Imputation Techniques in Regression Analysis: Looking Closely at Their Implementation [J]. Computational Statistics and Data Analysis, 1995,20(1) :45-57.
  • 5Rao JNK, Shao J. Jackknife Variance Estimation with Survey Data under Hot Deck Imputation[J]. Biometrika, 1992,79(4):811-822.
  • 6Little R J A, Rubin D B. Statistical Analysis with Missing Data[M]. New York: Wiley and Sones, Inc, 1987.
  • 7Qin Y S, Qian Y J. Empirical Likelihood Confi-dence Intervals for the Differences of Quantiles with Missing Data [J]. Acta Mathematicae Applicatae Sinica(English Series), 2009,25(1) : 105-116.
  • 8Owen A B. Empirical Likelihood Ratio Confidence Intervals for a Single Functional[J]. Biometrika, 1988,75(2) :237-249.
  • 9Owen A B. Empirical Likelihood Confidence Regions[J]. Ann Statist, 1990,18(1) :90-120.
  • 10SUN Z H, WANG Q H, DAI P J. Model Checking for Partially Linear Models with Missing Responses at Random [J]. Journal of Multivariate Analysis, 2009, 100(4): 636-651.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部