期刊文献+

一类时滞脉冲Lotka-Volterra系统的概周期解 被引量:6

Almost Periodic Solutions for a Class of Lotka-Volterra Systems with Impulses and Delays
下载PDF
导出
摘要 本文利用Lyapunov函数的方法,研究一类时滞脉冲Lotka-Volterra系统的概周期解的存在性,得出保证方程存在概周期解的一组充分条件。 By applying the method of Lyapunov' s functions, the existence and uniqueness of almost periodic solutions for a class of Lotka-Volterra systems with impulses and infinite delays are investigated. A sufficient condition which ensures the existence of almost periodic solutions is derived.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2014年第1期69-73,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11361010)
关键词 LYAPUNOV函数 LOTKA-VOLTERRA系统 概周期解 脉冲 时滞 Lyapunov' s functions Lotka-Volterra system almost periodic solution impulsive effect delay
  • 相关文献

参考文献10

  • 1燕居让.一类Lotka-Volterra型竞争系统正周期解的存在性[J].山西大学学报(自然科学版),2009,32(4):487-490. 被引量:2
  • 2李金仙,燕居让.非自治脉冲Lotka-Volterra系统的持久性与渐近稳定性[J].山西大学学报(自然科学版),2007,30(1):24-27. 被引量:1
  • 3熊友兵,王克.一类具时滞生态系统的概周期解[J].高校应用数学学报(A辑),2003,18(2):163-170. 被引量:8
  • 4AHMAD S, STAMOVA I M. Asymptotic stability of an N-dimensional impulsive competitive system[J]. Nonlinear Analysis : Real World Applications, 2007,8 (2) : 654-663.
  • 5MENG Xin-zhu, JIAO Jian-jun, CHEN Lan-sun. Global dynamics behaviors for a nonautonomous Lotka-Volterra almost periodic dispersal system with delays[J].Nonlinear Analysis : Theory, Methods and Applications, 2008,68 (12) : 3633-3645.
  • 6MENG Xin-zhu,CHEN Lan-sun. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay[J]. Journal of Mathematical Analysis and Applications,2008,339(1):125-145.
  • 7冯春华,刘永建,葛渭高.时滞Lotka-Volterra竞争型系统的概周期解[J].应用数学学报,2005,28(3):458-465. 被引量:14
  • 8TENG Zhi-dong, CHEN Lan-sun. Global asymptotic stability of periodic Lotka-Volterra systems with delays[J]. Nonlinear Analysis, Theory, Methods and Applications, 2001,45 (8) : 1081-1095.
  • 9SAMOILENKO A M,PERESTYUK N A. Differential equations with impulse effect [M]. Kiev:Visca Skola, 1987.
  • 10STAMOV G T,ALZABUT J O, ATANASOV P D, et al. Almost periodic solutions for an impulsive delay model of price fluctuations in commodity markets[J]. Nonlinear Analysis:Real World Applications, 2011,12 (6):3170-3176.

二级参考文献18

  • 1GOPALSAMY K. Stability and Oscillation in Delay Differential Equations of Population Dynamics[M]. Dordrecht:Kluwer Academic Publishers, 1992.
  • 2KUANG Y. Delay Differential Equation with Applications in Population Dynamimcs[M]. Boston: Academic Press, 1993.
  • 3LI Y K. Periodic Solutions for Delay Lotka-Volterra Competition System[J]. J Math Anal Appl, 2000,246 : 230-244.
  • 4FAN M,WANG K, JIANG D Q. Existence and Global Attractivity of Positive Periodic Solutions of Periodic n-species Lotka-Volterra Competition Systems with Several Deviating Arguments[J]. Math Bilsci, 1999,160:47-61.
  • 5TANG X H,ZOU X. On Positive Periodic Solutions of Lotka-Volterra Competition Systems with Deviating Arguments [J]. Proc Amer Math Soc ,2006,134:2967-2974.
  • 6TANG X H, CAO D, ZOU X. Global Attractivity of Positive Periodic Solutions to Periodic Lotka-Volterra Competition Systems[J]. J Diff Equations, 2006,228 : 580-610.
  • 7GUO D,LAKSHMIKANTNHAM V. Nonlinear Problems in Abstract Cones[M]. New York:Academic Press, 1988.
  • 8Skellam J G. Random dispersal in theoretical populations[J]. Biometrika, 1951,38 : 196-218.
  • 9Levin S A. Dispersion and population interactions[J]. The Amer. Nat. , 1974,108 : 207-228.
  • 10Zeng G Z,Chen L S, Chen J F. Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Volterra models [J]. Math. Comput. Modelling, 1994,20 ( 12 ) : 69-80.

共引文献21

同被引文献57

  • 1李建利,申建华.具脉冲时滞的Duffing型方程的周期解[J].应用数学学报,2005,28(1):124-133. 被引量:11
  • 2张树文,陈兰荪.具有密度依赖的生育脉冲单种群阶段结构模型[J].系统科学与数学,2006,26(6):752-760. 被引量:6
  • 3张泽薇,谭佳.基于IPM策略的具有一般功能性反应的捕食与被捕食模型的动力学性质[J].新疆大学学报(自然科学版),2007,24(3):289-293. 被引量:1
  • 4HONG Zhang, LANSUN Chen. A Delayed Epidemic Model with Stage-structure and Pulses for Pest Management Strategy [ J ]. Non- linear Analysis: Real World Applications. 2008, 9 (4) : 1714 - 1726.
  • 5JIANG Guirong, LU Qishao. Impulsive Ecological Control of Staged-structured Pest Management System [ J ], Mathematical Bio- sciences and Engineering. 2005, 2 ( 2 ) : 329 - 344.
  • 6ZHANG Weipeng, FAN Meng. Periodicity in a generalized ecolog- ical competition system governed by impulsive differential equa- tions with delays [ J]. Mathematical and Computer Modelling, 2004, 39(4 -5) :479 -493.
  • 7LI Xiaoyue, ZHANG Xiaoying. A New Existence Theory for Posi- tive Periodic Solutions to Functional Differential Equations Wiyh Impulse Effects [ J ]. Computer & Mathematics with Applications, 2006, 51(12) : 1761 -1772.
  • 8LIU Bing, CHEN Lansun. Dynamic Complexities in Lotka-Volter- ra Predator-prey System Concerning Impulsive Control Strategy [ J ]. Intemationd Journal of Bifurcation and Chaos in Applied Sci- ences and Engineering,2005,15(2) :517 -531.
  • 9LIU Bing, CHEN Lansun. Dynamic Complexities of a Holling I Predator -prey Model Concerning Periodic Biological and Chemi-cal Control[ J ]. 2004,22 ( 1 ) : 123 - 134.
  • 10CHEN Lansun. Complex Dynamics of Holling I1 Lotka-Volterra Predator-prey System with Impulsive Perturbations on the Predator [J]. Chaos, Solitons and Fractals. 2003, 16(2) : 311 -320.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部