期刊文献+

产业结构优化下电力行业碳减排潜力分析 被引量:6

The Analysis of Power Sector Carbon Mitigation Potential in the Industrial Structure Optimization Scene
下载PDF
导出
摘要 电力行业是我国二氧化碳排放最多的行业之一。本文建立了基于成分数据降维的政府干预产业结构预测模型,结合灰色预测法,依据不同的发展阶段,从单位GDP用电量增长率的角度,研究了2011年—2040年产业结构优化对电力行业碳减排的影响,研究发现:(1)在现有情景下,仅通过产业结构优化调整,单位GDP用电量的临界点将提前出现,在基准情景下(保持现有发展速度),2012年出现临界点,强化情景下(提高第三产业发展速度),2017年达临界点。(2)由于电力是高品质能源,仅通过产业结构优化,而不考虑技术进步,未来2040年以前,达不到耗电峰值;(3)由于第二产业基数较大,短期内产业结构优化效果并不明显,在临界点出现之前,减少碳排放的关键在于加大对电力行业节能减排技术的投入和使用,同时大力发展风电、光伏发电、生物质能和核能等清洁电源,改善我国电源结构。 Global warming will continue to intensify and produce more significant negative impact on social economy and natural ecological system.As a main carbon emission country,China has the responsibility and obligation to reduce carbon emission.China's current main power source is thermal power,which makes the electric power industry to be one of the largest carbon dioxide emission industries.Therefore,it is imperative to first investigate how to reduce carbon emission for electric power industry in China.Macro-economic structure affects electric power industry's potential carbon emissions.We develop a government intervention industry structure prediction model based on composition data dimension reduction,the Grey prediction,and electricity consumption per unit of GDP growth rate.The model can help analyze the relationship between industrial structure optimization and carbon emission in electric power industry.Three scenarios,including Benchmark scenario,strengthen scenario I and strengthen scenario Ⅱ,are proposed to discuss the impact of industrial structure optimization on electric power industry's carbon emissions.The total carbon emission of electric power industry is affected by the electric power demand and carbon emission factors.The power demand of per unit of GDP varies with industries.Because the industrial structure optimization changes the electric power demand of per unit of GDP and the total electric power demand,the carbon emission of electric power industry is also changed.However,the carbon emission factors are decided by the technical level of electric power industry.The industrial structure optimization has little influence on carbon emission factors.Technical progress is not considered because technology progress influence is not considered,and related technical datum is same with the datum year 2005.The future power consumption per unit of GDP is dependent on future industrial structure and electricity consumption per unit of GDP for these three industries.The findings of this study have some implications.First,only through adjustment and optimization of industrial structure can the critical point of electric power quantity per GDP appear early.In the baseline scenario,the critical point will appear in 2022.In the aggrandizement scenario,the critical point will appear in 2017.Second,only through the optimization of industrial structure and ignorance of the technical progress could reach the peak of electric power in 2040 because electric power is high-quality energy.Third,the optimization effect in short term is not obvious because the GDP of the second industry is the largest.Before the critical point appears,the key way to reducing carbon emissions is to increase the investment on the technology of energy conservation and emission reduction.At the same time,Chinese government needs to continuously develop clean energy and improve the structure of Chinese power supply,such as wind power,photo electricity,biomass power,and nuclear power.
出处 《管理工程学报》 CSSCI 北大核心 2014年第2期87-92,86,共7页 Journal of Industrial Engineering and Engineering Management
基金 国家自然科学基金资助项目(71073095) 教育部人文社会科学研究青年基金资助项目(10YJC630161)
关键词 产业结构优化 碳减排 电力行业 灰色预测 降维 industrial structure optimization Carbon emission reduction electric power industry grey prediction method of descent
  • 相关文献

参考文献20

  • 1钟艺辉.华夏电力的节能减排分析一可持续发展的战略初探[D].厦门大学,2009(12).
  • 2卢艳超,张彩庆.基于核函数的PCA-LINMAP模型的电源结构优化评价[J].华东电力,2006,34(8):88-91. 被引量:6
  • 3Athanasios I. Tolls, Athanasios A. Rentizelas, LLias P. Tatsiopoulos. Optimisation of electricity energy markets and assessment of CO2 trading on their structure : A stochastic analysis of the Greek Power I J ]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2529-2546.
  • 4Zhang Chuanping, Liu Xiaoliang,. Zhou Qianqian. Reach on China Energy Structure with CO2 Minimum Emission In 2020 [Jl. Energy Proeedia, 2011, 5:1084 - 1092.
  • 5H. Mirzaesmaeeli, A. Elkamel, P. L. Douglas. A multi-period optimization model for energy planning with CO2 emission consideration [ J]. Journal of Environmental Management,2010, 91 (5) :1063 - 1070.
  • 6朱柏青.电力企业节能减排的实践与思考[J].能源技术与管理,2009,34(3):149-150. 被引量:3
  • 7Joseph F. DeCarolis, David W. Keith. The economics of large- scale wind power in a carbon constrained world [ J ]. Energy Policy, 2006, 34 (4):395-410.
  • 8Ralph E. H. Sims, Hans-Holger Rogner, Ken Gregory. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation [J]. Energy Policy, 2003, 31(13): 1315-1326.
  • 9Fu-Kuang Ko, Chang-Bin Huang, Pei-Ying Tseng. Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan [ J]. Energy Policy, 2010, 38 ( 1 ) :288 - 300.
  • 10Tobias A. Persson, Ulrika Claeson Colpier, Christian Azar. Adoption of carbon dioxide efficient technologies and practices: An analysis of sector-specific convergence trends among 12 nations [ J ]. Energy Policy, 2007, 35 (5) :2869 - 2878.

二级参考文献44

共引文献180

同被引文献77

引证文献6

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部