摘要
We perform first-principles calculations for ZnO thin films with oxygen vacancy defects. The densities of states, partial atomic densities of states, charge density differences and atomic populations are presented. We show that the SET process, i.e., from a high resistive state to a low resistive state, is attributable to the aggregation and regular arrangement of the oxygen vacancies, which causes the formation of conductive filaments and leads to the low resistive state of the system.
We perform first-principles calculations for ZnO thin films with oxygen vacancy defects. The densities of states, partial atomic densities of states, charge density differences and atomic populations are presented. We show that the SET process, i.e., from a high resistive state to a low resistive state, is attributable to the aggregation and regular arrangement of the oxygen vacancies, which causes the formation of conductive filaments and leads to the low resistive state of the system.
基金
Supported by the Natural Science Foundation of Hebei Province under Grant No A2013205149, and the Key Project of Hebei Education Department under Grant No ZH2012067.