摘要
We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the performances of p-type (copper phthalocyanine) and n-type (fluorinated copper phthaloeyanine) OFETs with optimized thickness of p-4p thin films are greatly enhanced. Both the field-effect mobility and the on/off ratio of the two-type devices are improved by one order of magnitude compared to those of the control devices. This re- markable improvement is attributed to the introduction of p-4p, which can form a highly oriented and continuous phthalocyanine derivative film with the molecular π - π stack direction parallel to the substrate.
We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the performances of p-type (copper phthalocyanine) and n-type (fluorinated copper phthaloeyanine) OFETs with optimized thickness of p-4p thin films are greatly enhanced. Both the field-effect mobility and the on/off ratio of the two-type devices are improved by one order of magnitude compared to those of the control devices. This re- markable improvement is attributed to the introduction of p-4p, which can form a highly oriented and continuous phthalocyanine derivative film with the molecular π - π stack direction parallel to the substrate.
基金
Supported by the National Natural Science Foundation of China under Grant No 60676051, the Natural Science Foundation of Tianjin under Grant No 07JCYBJC12700, the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin, and the Key Program for Science and Technology in Tianjin under Grant No 14ZCZDGX00600.