期刊文献+

Methanogenesis and Methanotrophy in Soil: A Review 被引量:10

Methanogenesis and Methanotrophy in Soil: A Review
原文传递
导出
摘要 Global warming,as a result of an increase in the mean temperature of the planet,might lead to catastrophic events for humanity.This temperature increase is mainly the result of an increase in the atmospheric greenhouse gases(GHG)concentration.Water vapor,carbon dioxide(CO2),methane(CH4)and nitrous oxide(N2O)are the most important GHG,and human activities,such as industry,livestock and agriculture,contribute to the production of these gases.Methane,at an atmospheric concentration of 1.7μmol mol-1currently,is responsible for 16%of the global warming due to its relatively high global warming potential.Soils play an important role in the CH4cycle as methanotrophy(oxidation of CH4)and methanogenesis(production of CH4)take place in them.Understanding methanogenesis and methanotrophy is essential to establish new agriculture techniques and industrial processes that contribute to a better balance of GHG.The current knowledge of methanogenesis and methanotrophy in soils,anaerobic CH4 oxidation and methanotrophy in extreme environments is also discussed. Global warming, as a result of an increase in the mean temperature of the planet, might lead to catastrophic events for humanity. This temperature increase is mainly the result of an increase in the atmospheric greenhouse gases (GHG) concentration. Water vapor, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20) are the most important GHG, and human activities, such as industry, livestock and agriculture, contribute to the production of these gases. Methane, at an atmospheric concentration of 1.7 gmol tool-1 currently, is responsible for 16% of the global warming due to its relatively high global warming potential. Soils play an important role in the CH4 cycle as methanotrophy (oxidation of CH4) and methanogenesis (production of CH4) take place in them. Understanding methanogenesis and methanotrophy is essential to establish new agriculture techniques and industrial processes that contribute to a better balance of GHG. The current knowledge of methanogenesis and methanotrophy in soils, anaerobic CH4 oxidation and methanotrophy in extreme environments is also discussed.
出处 《Pedosphere》 SCIE CAS CSCD 2014年第3期291-307,共17页 土壤圈(英文版)
基金 Supported by the Centro de Investigación y de Estudios Avanzados del IPN,Mexico and the Consejo Nacional de Ciencia y Tecnología,Mexico(Nos.153216,232468 and 245119)
关键词 甲烷 土壤 工业生产过程 CH4氧化 温室气体 展望 全球气候变暖 全球变暖 anaerobic CH4 oxidation, biological production, global warming, methanogenic archaea, methanotrophic bacteria
  • 相关文献

参考文献1

二级参考文献82

  • 1Dunfield, P., Knowles, R., Dumont, R. and Moore, T. R. 1993. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biol. Biochem. 25(3): 321-326.
  • 2Fechner-Levy, E. J. and Hemond, H. F. 1996. Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnol. Oceanogr. 41(7): 1 375-1 383.
  • 3Galand, P. E., Fritze, H., Conrad, R. and Yrjala, K. 2005. Pathways for methanogenesis and diversity of methanogenic Archaea in three boreal peatland ecosystems. Appl. Environ. Microb. 71(4): 2 195-2 198.
  • 4Garcia, J. L., Patel, B. K. C. and Ollivier, B. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe. 6(4): 205-226.
  • 5Gauci, V., Matthews, E., Dise, N., Walter, B., Koch, D., Granberg, G. and Vile, M. 2004. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc. Natl. Acad. Sci. 101(34): 12 583-12 587.
  • 6Glaser, P. H., Chanton, J. P., Morin, P., Rosenberry, D. O., Siegel, D. I., Ruud, O., Chasar, L. I. and Reeve, A. S. 2004. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global Biogeochem. Cy. 18: GB1003, doi:10.1029/2003GB002069.
  • 7Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1(2): 182-195.
  • 8Criffis, T. J., Rouse, W. R. and Waddington, J. M. 2000. Scaling net ecosystem CO2 exchange from the community to landscape-level at a subarctic fen. Glob. Change Biol. 6(4): 459-473.
  • 9Grot3e, W. 1996. The mechanism of thermal transpiration (= thermal osmosis). Aquat. Bot. 54(2-3): 101-110.
  • 10Hansor.. R. S. and Hanson, T. E. 1996. Methanotrophic bacteria. Microbiol. Rev. 60(2): 439 471.

共引文献11

同被引文献214

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部