期刊文献+

极大代数上有限生成模的凸性

THE CONVEXITY OF FINITELY GENERATED MODULE OVER MAX-PLUS ALGEBRA
原文传递
导出
摘要 研究极大代数上有限生成模的凸性.基于极大代数上有限生成模的几何形态,运用代数与几何方法,分析空间维数n≤3和生成向量数m≥1的有限生成模的凸性.证明n=1,2的有限生成模是凸集.对于n=3,给出m=2的有限生成模为凸集的一个充分必要条件,以及m≥3的有限生成模为凸集的一个充分条件.此外,对于极大代数上有限生成模的几何形态,发现n=3,m≥3的形态有三种情形. The convexity of finitely generated module over max-plus algebra is stud- ied in this paper. By applying the geometric shape of finitely generated module and using algebraic method combined with geometric method, the convexity of finitely generated module with dimension n ≤ 3 and the number of generating vector rn ≥ 1 are analyzed. It is proved that the finitely generated module with n = 1, 2 is a convex set. For n = 3, the necessary and sufficient condition for the convexity with m = 2 and the sufficient condition for the convexity with rn ≥ 3 are obtained, respectively. Besides, with regard to the geometric shape of finitely generated module over max-plus algebra, it is found out that there are three types of geometric shapes with n = 3 and rn≥ 3.
出处 《系统科学与数学》 CSCD 北大核心 2014年第3期330-339,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60774007 11271108) 河北师范大学青年基金(L2012Q01)资助课题
关键词 极大代数 有限生成模 几何形态 凸性分析 Max-plus algebra, finitely generated module, geometric shape, convex-ity.
  • 相关文献

参考文献11

  • 1Cohen G, Gaubert S, Quadrat J P. Max-plus algebra and system theory: Where we are and where to go now. Annual Reviews in Control, 1999, 23: 207-219.
  • 2王龙,黄琳.离散系统鲁棒性分析——一种几何方法[J].科学通报,1992,37(2):117-120. 被引量:4
  • 3Cuninghame-Green R A. Minimax Algebra, Number 166 in Lecture Notes in Economics and Mathematical Systems. Berlin: Springer, 1979.
  • 4Gondran M, Minoux M. Linear algebra in dioids: A survey of recent results. North-Holland Mathematics Studies, 1984, 95: 147-163.
  • 5陈文德.极大代数上有限生成模的几何形态[J].系统科学与数学,1998,18(1):11-17. 被引量:2
  • 6Katz R D. Max-plus (A, B)-invariant spaces and control of timed discrete-event systems. IEEE Transactions on Automatic Control, 2007, 52(2): 229-241.
  • 7Peter D L. Functional Analysis. New York: Wiley-Interscience, 2002.
  • 8Baccelli F, Cohen G, Olsder G J, Quadrat J P. Synchronization and Linearity. New York: Wiley, 1992.
  • 9陈文德.准域上系统理论的数学基础.系统科学与数学,1986,6(1):1-9.
  • 10Heidergott B, Olsder G J, van der Woude J. Max Plus at Work: Modeling and Analysis of Synchronized Systems. New Jersey: Princeton University Press, 2006.

二级参考文献1

  • 1陈文德,系统科学与数学,1986年,6卷,1期,1页

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部