摘要
For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink combination, however, is formed by magnesium silicate resources at Vammala, located -85 km east of the 565 MWe coal-fired Meri-Pori Power Plant on the country's southwest coast. This paper assesses mineral sequestration of Meri-Pori power plant CO2, using Vammala mineral resources and the mineralisation process under development at Abo Akademi University. That process implies Mg(OH)E production from magnesium silicate-based rock, followed by gas/solid carbonation of the Mg(OH)2 in a pressurised fluidised bed. Reported are results on experimental work, i.e., Mg(OH)2 production, with rock from locations close to Meri-Pori. Results suggest a total CO2 fixation capacity -50 Mt CO2 for the Vammala site, although production of Mg(OH)2 from rock from the site is challenging. Finally, as mineralisation could be directly applied to flue gases without CO2 pre-capture, we report from experimental work on carbonation of Mg(OH)2 with CO2 and CO2-SO2-O2 gas mixtures. Results show that SO2 readily reacts with Mg(OH)2, providing an opportunity to simultaneously capture SO2 and CO2, which could make separate flue gas desulphurisation redundant.