摘要
本文研究了一类测度链上二阶三点微分方程边值问题xΔΔ(t)+f(t,x(t))=0,t∈(0,1)∩T,x(0)=x(1),xΔ(0)-xΔ(1)=αx(ξ),这里,f:[0,1]×[0,∞)→[0,∞)是一连续函数,满足对称性条件f(t,x)=f(1-t,x),0,1,ξ∈T,0<ξ<1,α<1/(ξ-ξ2)。借助不动点指数性质的应用获得了3个对称正解的存在性。
This paper addresses the existence of symmetric positive solutions for the boundary value problem of a kind of second-order three-point differential equation on a measure chain,x△△ (t) + f(t,x(t)) =0,t ∈ (0,1) ∩ T,x(0) =x(1),x△ (0)-x△ (1) =ax(ξ),Where f:[0,1] × [0,∞)→[0,∞) is continuous and satisfies f(t,x) =f(1-t,x),0,1,ξ ∈ T,0 <ξ < 1,α < 1/(ξ-ξ2).Existence of three symmetric positive solutions is acquired with fixed point index property.
出处
《山东科学》
CAS
2014年第2期98-101,共4页
Shandong Science
关键词
边值问题
对称解
测度链
不动点指数
boundary value problem
symmetric solution
measure chains
fixed point index