期刊文献+

不规则区域中可压缩流动的数值模拟

Numerical Simulation of Compressible Flows in Irregular Geometries
下载PDF
导出
摘要 将不可压缩流动的SIMPLE算法推广到可压缩流动的计算中。将二维直角坐标系和轴对称坐标系下的可压缩流动的控制方程用统一的方程式表达,在贴体网格中利用有限体积法进行离散,编制了通用的求解程序。对带有凸包的通道可压缩流动和轴对称坐标系下的马赫反射问题进行了数值模拟,得到的结果与相关文献中的结果吻合,表明了所提算法的正确有效性。 The SIMPLE algorithm for incompressible flows is extended to calculate compressible flows.The governing equations of compressible flows in both Cartesian and axisymmetric coordinates are arranged into an unified form.The governing equation in curvilinear coordinates is discretized using a finite volume method and is solved using apressure-correction procedure.The compressible flows in a channel with an arc bump and the flows in a nozzle with shock wave reflections are calculated,and are validated by bench mark numerical solutions.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期250-255,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(51176048)
关键词 SIMPLE算法 可压缩流动 N-S方程 SIMPLE algorithm compressible flow N-S equation
  • 相关文献

参考文献7

  • 1Karki K C, Patankar S V. Pressure based calculation proce- dure for viscous flows at all speeds in arbitrary configurations [J]. AIAA, 1989, 27(7):1167-1174.
  • 2Moukalled F, Darwish M. A high resolution pressure-based algorithm for flow at all speeds[J]. Journal of Computational Physics, 2001, 168(1) : 101-133.
  • 3陈矛章.粘性流体力学基础[M].北京:高等教育出版社,1993.
  • 4赖焕新,邢改兰,云楚烨.非结构网格的高精度有限体积离散格式[J].工程热物理学报,2010,31(9):1496-1499. 被引量:3
  • 5陶文铨.计算传热学的近代进展[M].北京:科学出版社,1993:209-224.
  • 6Eidelman S, Colella P, Shreeve R P. Application of the godunov method and its second-order extension to cascade flow modeling[J]. AIAA, 1984, 22(11):1609 -1615.
  • 7高波,吴子牛.轴对称可压缩流的统一坐标系[J].计算物理,2007,24(5):519-525. 被引量:2

二级参考文献7

  • 1Barth T, Jesperson D C. The Design and Application of Upwind Schemes on Unstructured Meshes [R]. AIAA Pa- per 89-0366, 1989.
  • 2Darwish M S, Moukalled F. TVD Schemes for Unstructured Grids [J]. International Journal of Heat and Mass Transfer, 2003, 46:599-611.
  • 3Leonard B P. Simple High-Accuracy Resolution Program for Convective Modelling of Discontinuities [J]. Interna- tional Journal for Numerical Methods in Engineering, 1988, 8:1291-1318.
  • 4Darwish M S, Moukalled F H. Normalized Variable and Space Formulation Methodology for High-Resolution Schemes [J]. Numerical Heat Transfer, Part B. 1994, 26: 79-96.
  • 5Khosla P K, Rubin S G. A Diagonal Dominant Second- Order Accurate Implicit Scheme [J]. Computers and Fluids, 1974, 2:207-209.
  • 6Demirdzic I, Lilek Z, Peric M. Fluid Flow and Heat Transfer Test Problems for Non-orthogonal Grids: Bench-Mark Solutions [J]. International Journal for Numerical Methods in Fluids, 1992, 15:329-354.
  • 7陈正,石静,吴子牛.广义特征坐标系计算膨胀波与激波优越性的数值验证[J].计算物理,2004,21(1):15-20. 被引量:4

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部