期刊文献+

对数正态分布最大值的逐点收敛速度 被引量:1

The Point-wise Rate of Convergence of Maxima for Logarithm Normal Distribution
下载PDF
导出
摘要 对数正态分布是统计、生物和其他一些领域应用最广泛的分布之一,并且在理论分析和广泛的应用中将正态分布转到对数正态分布是流行的.作者研究了对数正态分布的收敛速度,得到逐点收敛速度. The lognormal distribution is one of the most widely applied distributions in statistics, biology andsome other disciplines. Furthermore, it is popular in theoretical analysis and wide applications that the normal distribution is carried over to logarithmic normal one. In this paper, we study convergence rate of the logarithm normal distribution and derive the point-wise convergence rate.
出处 《遵义师范学院学报》 2014年第2期68-70,共3页 Journal of Zunyi Normal University
关键词 对数正态分布 最大值 收敛速度 logarithm normal distribution maxima convergence rate
  • 相关文献

参考文献8

  • 1Hall P. On the Rate of Convergence of Normal Extremes[J]. Journal Applied Probability, 1979, 16(2): 433-439.
  • 2熊芳,彭作祥.埃尔兰分布极值的收敛速度(英文)[J].西南大学学报(自然科学版),2011,33(3):5-8. 被引量:4
  • 3Lin Fu-ming, Zhang Xin-hua, Peng Zuo-xiang, et al. On the rate of convergence of STSD extremes[J]. Communications in Statistics-Theory and Methods, 2011, 40(10): 1795-1806.
  • 4Chen Shou-quan, Huang Jian-wen. Rates of Convergence of Extreme for Asymmetric Normal Distribution[J]. Statistics and Probability Letters, 2014, (84): 158-168.
  • 5刘豹,付颖.麦克斯韦分布的逐点收敛速度[J].西南大学学报(自然科学版),2013,35(5):80-83. 被引量:6
  • 6Liao X,Peng Z. Convergence rates of limit distribution of ma- xima of lognormal samples[J]. Journal of Mathematical Ana- lysis and Applications, 2012, 395: 643-653.
  • 7Leadbetter M R, Lindgren G, Rootzen H. Extremes and Re lated Properties of Random Sequences and Processes[M]. New York: Springer, 1983.
  • 8Resnick S I. Extreme value, Regular Variation, and Point Pro cesses[M]. New York: Springer-Verlag, 1987.

二级参考文献19

  • 1FANG Yu-guang. Hyper-Erlang Distribution Model and Its Application in Wireless Mobile Networks [J]. Wireless Networks, 2001, 7(3) 211-219.
  • 2FRICKER C, ROBERT P, TIBI D. On the Rates of Convergence of Erlang's Model [J]. Journal of Applied Probability, 1999, 36(4).. 1167-1184.
  • 3MICHAEL V. A Note on the Rate of Convergence to Equilibrium for Erlang's Model in the Subcritical Case [J]. Journal of Applied Probability, 2000, 37(3): 918-923.
  • 4HALL P. On the Rate of Convergence of Normal Extremes [J]. Journal of Applied Probability, 1979, 16: 433-439.
  • 5HALL W J, WELLNER J A. The Rate of Convergence in Law of the Maximum of an Exponential Sample [J]. Statistica Neerlandica, 1979, 33(3): 51-154.
  • 6DE HAAN L, RESNICK S I. Second Order Regular Variation and Rates of Convergence in Extreme Value Theory [J]. Annals of Probability, 1996, 24(1): 97-124.
  • 7MLADENOVIC P, VUKMIROVIC J. Rates of Convergence in Certain Limit Theorem for Extreme Values [J]. Journal of Mathematical Analysis and Applications, 2009, 363(1)~ 287-295.
  • 8LIU Ke, PENG Zuo-xiang. The Convergence Rates of Conditional Moments [J]. 西南大学学报,自然科学版, 2007, 29 (1): 5-8.
  • 9LEADBETTER M R, LINDGREN G, ROOTZI~N H. Extremes and Related Properties of Random Sequences and Processes [M]. Berlin: Springer-Verlag, 1983.
  • 10RESNICK S I. Extreme Values, Regular Variation and Point Processes [M]. Berlin: Springer-Verlag, 1987.

共引文献7

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部