期刊文献+

处理异常值的相机抖动模糊图像复原 被引量:7

Disposing of outliers in camera-shake blurred images restoration
原文传递
导出
摘要 目的在曝光过程中由于相机抖动而导致的图像模糊,是一种常见的图像降质现象,并且模糊图像中存在的异常值会导致复原结果的振铃效应,为了解决这些问题,本文提出一种处理异常值的相机抖动模糊图像复原算法。方法该算法以自然图像统计为先验模型,结合变分贝叶斯方法和KL散度(Kullback-Leibler divergence)构造易于优化的代价函数,进而求出模糊核。针对异常值造成的振铃效应,在解卷积的过程中采用期望-最大值算法估计并处理异常值以抑制振铃效应。结果采用本文方法对大量模糊图片进行复原,实验结果表明该方法能有效地去除相机抖动产生的模糊,在保持图像边缘和细节的同时,可有效抑制振铃效应。结论提出了一种通过处理异常值达到抑制振铃效应目的,进而提高复原效果的图像盲复原新方法。实验结果表明该方法切实有效,并且该方法引出了一种抑制振铃效应的新思路。 Objective Motion blur due to camera shaking during exposure is a common phenomena of image degradation.Moreover,neglecting the outliers that exist in the blurred image will result in the ringing effect of restored images.In order to solve these problems,a method for camera-shake blurred images restoration with disposing of outliers is proposed.Method The algorithm,which takes the natural image statistics as prior model,combines variational Bayesian estimation theory with Kullback-Leibler divergence to construct a cost function,which can be easily optimized to estimate the blur kernel.Taking into consideration the ringing effect causing by outliers,an expectation-maximization based algorithm for deconvolution is proposed to reduce the ringing effect.Result A large quantity of blurred images are restored with this algorithm,the experimental results show that the algorithm of blind image restoration can effectively remove the blur caused by camera shaking,and can effectively reduce the ringing effect,while preserving the image edge and details.Conclusion We propose a new method for blind image restoration,which deals with the outliers for suppressing ringing effect to improve the effect of restoration.The experimental results show that the method is practical and effective; this method also triggers the thinking about a new way to suppress ringing effect.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第5期677-682,共6页 Journal of Image and Graphics
基金 吉林省科技厅项目(20090512 20100312)
关键词 相机抖动 图像复原 期望-最大值算法 核估计 camera shake image restoration expectation-maximization algorithm kernel estimation
  • 相关文献

参考文献14

  • 1Levin A, Weiss Y, Durand F. Understanding blind deco-nwlu- lion algorithms [ J]. Pattern Analysis and Machine Intelligence.2011, 33 (12) : 2354-2367. [DOI: 10. ll09/TPAMI. 2011. 148].
  • 2Joshi N, Szeliski R, Kriegman D. PSF estimation using sharp edge prediction [ C ]//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition. Anchorage, AK : IEEE, 2008 : 1-8. [DOI: 10. 1109/CVPR. 2008. 4587834 ].
  • 3Miskin J, Mackay D J C . Advances in Independent Component Analysis [ M]. New York: Springer-Verlag, 2000: 123-141.
  • 4Fergus R, Singh B, Hertzbann A, et al. Removing camera shake from a single photograph [ J]. ACM Transactions on Graphics, 2006, 25(3) : 787-794. [DOI: 10. 1145/1179352. 1141956].
  • 5Shan Q, Jia J Y, Agarwala A. High-quality motion deblurring from a single image [ J ]. ACM Transactions on Graphics, 2008, 27(3), 73(1-10). [DOI: 10. 1145/1360612. 1360672].
  • 6Xu L, Jia J Y. Two-phase kernel estimation for robust motion de- blurring [ C ]//Proceedings of the 11th European Conference on Computer Vision. Crete, Greece: Springer, 2010: 157-170. [ DOI: 10. 1007/978-3-642- 15549-9-12].
  • 7Xu L, Jia J Y. Depth-aware motion deblurring [ C ]//Proceed- ings of the IEEE International Conference on Computational Pho- tography. Cluj-Napoca, Romania: IEEE, 2012: 1-8. [DOI: 10. 1109/ICCPhot. 2012. 6215220].
  • 8Lee J H, Ho Y S. High-quality non-blind image deconvolution [ C ]//The 4th Pacific-Rim Symposium on Image and Video Technology. Singapore : IEEE, 2010:282-287. [DOI: 10. 1109/ PSIVT. 2010. 541.
  • 9孙韶杰,吴琼,李国辉.基于变分贝叶斯估计的相机抖动模糊图像的盲复原算法[J].电子与信息学报,2010,32(11):2674-2679. 被引量:9
  • 10Cho S, Wang J, Lee S. Handling outliers in non-blind image de- convolution [ C ]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, SPain: IEEE, 2011 : 495-502. [DOI: 10. ll09/ICCV. 2011. 6126280].

二级参考文献10

  • 1Schuon S and Diepold K. Comparison of motion deblur algorithms and real world deployment[J]. Acta Astronautica, 2009, 64(11/12): 1050-1065.
  • 2徐大宏.基于正则化方法的图像复原算法研究[D].[博士论文],国防科学技术大学,2008.
  • 3Takeda H, Farsiu S, and Milanfar P. Deblurring using regularized locally-adaptive kernel regression[J]. IEEE Transactions on Image Processing, 2008, 17(4): 550-563.
  • 4Jia Jia-ya. Single image motion deblurring using transparency[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007: 1-8.
  • 5Shan Qi, Jia Jia-ya, and Agarwala A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 2008, 27(3): 1-10.
  • 6Miskin J W. Ensemble learning for independent component analysis[D]. [Ph.D. dissertation], Uni. Cambridge, 2000.
  • 7Fergus R, Singh B, and Hertzmann P, et al.. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.
  • 8Roth S and Black M J. Fields of experts: A framework for learning image priors[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, 2: 860-867.
  • 9Zheng Hong-wei and Olaf H. Image statistics and local spatial conditions for nonstationary Blurred Image Reconstruction[C]. Lecture Notes in Computer Science, 2007, LNCS 4713: 324-334.
  • 10Yao Nie and Barner K E. The fuzzy transformation and its applications in image processing[J]. IEEE Transactions on Image Processing, 2006, 15(4): 910-927.

共引文献8

同被引文献30

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部