Viscoelastic Rod Vibration Problem when Constitutive Relationship Contains a Fractional Derivative and its Limiting Case
Viscoelastic Rod Vibration Problem when Constitutive Relationship Contains a Fractional Derivative and its Limiting Case
摘要
The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.
参考文献10
-
1I. Podlubny, Fractional differential equations (an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications). Academic Press, San-Diego- Boston-New York-London-Sydley-Tokyo-Toronto, 1999.
-
2A.N. Tikhonov, A.A. Samarski. Equations of mathematical physics. (Russian), Nauka, Moscow, 1977, 735.
-
3H. Bateman and A. Erdelyi, A. Tables of Integral Transforms, vol.l, McGraw - Hill Book Co., New York, 1954.
-
4V.Bitsadze. Equations of mathematical physics. (Russian) Nauka, Moscow, Main Editorial Office of Physical and Mathematical Literature, 1982.
-
5K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, NY, usA, 1974.
-
6S.G. Samko, A.A. Kilbas and O.I. Marichev, Integrals and derivatives of the fractional order and some of their applications.(Russian), Nauka i Teknika, Minsk, Belasrus, 1987.
-
7Kai Diethelm, The Analysis of fractional diffedrentiale Equations, Springer, 2004.
-
8Abdon Atangana, Aydin Secer, A Note of fractional order derivatives andtable of fractional derivatives of some special functions. Abstract and Applied Analysis, (2013), Article ID 279681, 8.
-
9Francesco Mainardi, Fractional calculus and waves inl Linear viscoelasticity, Imperial College Press, 2011.
-
10D. Blend, Theory of linear viscoelasticity. Mir, Moscow, 1965.
-
1赵国兴,王寿梅.NEW CONSTITUTIVE RELATIONSHIP OF INCOMPRESSIBLE HYPERELASTICITY[J].Chinese Journal of Aeronautics,1998,11(1):16-23.
-
2刘洋.温度对悬索桥垂度的影响分析[J].四川水泥,2017(1):30-30.
-
3Ashutosh Trivedi.Computing in-situ strength of rock masses based upon RQD and modified joint factor: Using pressure and damage sensitive constitutive relationship[J].Journal of Rock Mechanics and Geotechnical Engineering,2015,7(5):540-565. 被引量:2
-
4何利军.分数阶导数蠕变模型及在FLAC3D中的数值实现[J].南昌航空大学学报(自然科学版),2015,29(4):35-39. 被引量:1
-
5吴斐,谢和平,刘建锋,边宇,裴建良.分数阶黏弹塑性蠕变模型试验研究[J].岩石力学与工程学报,2014,33(5):964-970. 被引量:32
-
6杨骁,何录武.粘弹基上受压粘弹杆的稳定性[J].兰州大学学报(自然科学版),1998,34(4):41-46.
-
7姚兆明,张秋瑾,牛连僧.基于蚁群算法的冻结重塑黏土分数阶导数西原模型分析[J].长江科学院院报,2016,33(7):81-86. 被引量:4
-
8王国体,王志亮.单桩侧摩擦阻力曲线的推求与拟合[J].合肥工业大学学报(自然科学版),2000,23(2):205-209. 被引量:11
-
9谭文长,徐明瑜.PLANE SURFACE SUDDENLY SET IN MOTION IN A VISCOELASTIC FLUID WITH FRACTIONAL MAXWELL MODEL[J].Acta Mechanica Sinica,2002,18(4):342-349. 被引量:19
-
10李锐铎,乐金朝.基于分数阶导数的软土非线性流变本构模型[J].应用基础与工程科学学报,2014,22(5):856-864. 被引量:16