期刊文献+

百里香酚合成薄荷醇副反应研究

Study on side reactions of thymol hydrogenation
下载PDF
导出
摘要 l-薄荷醇是世界上销量最大的香料之一,其生产方法主要以百里香酚为原料,先加氢生成薄荷醇8种异构体,再拆分得到l-薄荷醇.现有文献未对百里香酚催化加氢副反应进行深入研究.为加深对百里香酚加氢反应脉络的理解,本实验以雷尼镍为催化剂,观察其在高压反应釜中进行百里香酚合成薄荷醇的副反应,以气质联用方法 (GC-MS)鉴定了副产物结构.并采用量子化学方法研究了副反应机理,对不同副产物生成的可能性大小进行比较.结果表明,在200℃,3MPa时主要副反应为薄荷醇脱水,薄荷醇和百里香酚的连续脱甲基反应.反应机理为催化剂镍原子活化了异丙基上的碳碳键和连接环的碳氧键.主要副产物有烷基环己醇类、烷基苯酚类及烷基环己烷类,生成副产物可能性大小的顺序为烷基苯酚类>烷基环己醇类>烷基环己烷类. Menthol is one of the most popular perfumes in the world, applied on various areas of the fine chemical in- dustry, such as pharmaceutical, additives and perfumes. One of the industrial synthetic menthol process starts with thymol hydrogenation, followed by distillation of menthol mixture and crystallization of d,l-menthol. To analyze the whole reaction network of thymol hydrogenation, the side reactions of thymol hydrogenation were studied under Raney Ni catalyst in autoclave, and all by products were analyzed by GC-MS. The quantum chemistry method was used to study the mechanism o{ side reactions and predict the possibility of side products. Results showed that the side reactions consist of menthol dehydration and the demethylation of menthol and thymol under 200℃, 3 MPa, due to activated C C bonds and C--O bonds by Ni catalyst. The main byproducts are alkylated phenol, alkylated cyclohexanol and alkylated cyclohexane, and the possibility order of these side products is as follows: alkylated phenol 〉alkylated cyclohexanol〉alkylated cyclohexane.
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第3期310-313,共4页 Journal of Zhejiang University(Science Edition)
基金 浙江省重点科技创新团队计划资助(2011R50007)
关键词 薄荷醇 百里香酚 催化加氢 副反应 量子化学 menthol thymol hydrogenation side reactions quantum chemistry
  • 相关文献

参考文献10

  • 1BUDAVARI S. The Merck Index-An Encyclopedia of Chemicals, Drugs, and Biologicals[M]. Merck and Co. inc : Whitehouse Station, N J, 1996 : 996.
  • 2陈旭敏,黄山,陆涛,赵小龙,姜标.左旋薄荷醇的合成现状及进展[J].有机化学,2009,29(6):884-890. 被引量:10
  • 3ETZOLD B, JESS A, NOB1S M. Epimerisation of menthol stereoisomers: Kinetic studies of the hetero geneously catalysed menthol production[J]. Catalysis Today,2009,140(1/2) :30 36.
  • 4KUHN W, FUNK H, SENFT G, et al. Method for Producing Menthol[P]. DE: WO2004018398, 2004 03 04.
  • 5DUDAS J, HANIKA J. Design scale up and safe pi oting of thymo, hydrogenation and menthol racemiza tion[J]. Chemical Engineering Research and Design, 2009,87(1) :83-90.
  • 6DUDAS J, HANIKA J, LEPURU J, et al. Thymol hydrogenation in bench scale trickle bed reactor [J]. Chem Biochem Eng Q,2005,19(3) :255 262.
  • 7夏少武,刘红天,赵纯洁.雷尼镍活性本质的探讨[J].工业催化,2003,11(2):36-41. 被引量:15
  • 8JUN C H. Transition metal-catalyzed carbon carbon bond activation[J]. hem Soc Rev,2004,33:610-618.
  • 9SIEGBAHN E M, MARGARETA R, BLOMBERG A. Theoretical study of the activation of C--C bonds by rransition metal atoms[J]. J Am Chem Soe, 1992, 114:10548-10556.
  • 10贾建波,曾凡桂,李美芬,谢克昌.用密度泛函理论研究煤中甲基苯生成甲烷的反应机理[J].化工学报,2010,61(12):3235-3242. 被引量:13

二级参考文献69

  • 1王兰英,李贺军,卢锦花,白瑞成,郭领军,张秀莲.以甲苯为前驱体化学液气相沉积法制备碳/碳复合材料[J].高等学校化学学报,2005,26(6):1002-1005. 被引量:6
  • 2高崎城司.ラネ-触媒调制の新展开[J].触媒,1992,34(4):245-248.
  • 3Ravichandran, R. J. Mol. Catal. A: Chem. 2006, 256, 216.
  • 4Tsuhako, A.; He, J.-Q.; Mihara, M.; Saino, N.; Okamoto, S. Tetrahedron Lett. 2007, 48, 9120.
  • 5Sugiura, M.; Sato, N.; Kotani, S.; Nakajima, M. Chem. Commun. 2008, 4309.
  • 6Acharya, S. P.; Brown, H. C. J. Am. Chem. Soc. 1967, 89, 1925.
  • 7Gollnick, K.; Schade, G. Tetrahedron 1966, 22, 123.
  • 8Asouti, A.; Hadjiarapoglou, L. P. Synlett 2001, 1847.
  • 9Crombie, L.; Crombie, W. M. L.; Jamieson, S. V.; Palmer, C. J. J. Chem. Soc., Perkin Trans. 1 1988, 1243.
  • 10Sukh, D. Perfum. Flav. 1983, 8, 5.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部