期刊文献+

小训练样本的人脸识别研究 被引量:8

Review of Face Recognition on Small Sample Size Problem
下载PDF
导出
摘要 人脸识别问题在很多情况下都会面临小训练样本的问题,在训练样本数量远小于数据维数的情形下许多人脸识别方法都会遇到困难。本文分析了造成小样本问题的原因,从虚拟样本扩充、数据降维以及算法优化等不同方面总结了解决方法,并对不同方法进行了简要评价,对解决小样本问题的未来发展方向进行了展望。 Small Sample Size Problem is a general problem in face recognition. Most methods of face recognition will encounter difficulties when the number of samples is much smaller than the dimension of face data. This paper analyzed the the origin of the problem, and then defferent solutions were presented includeing virtual sample expansion,data reduction and algorithm optimization. A brief evaluation of different methods was given. Future directions of solving the problem were prospected .
出处 《软件》 2014年第3期167-169,共3页 Software
基金 北京市属高等学校人才强教计划资助项目(PHR201108261) 国家自然科学基金资助项目(61170116)
关键词 人脸识别 小样本问题 虚拟样本 数据降维 Face Recognition Small Sample Size Problem Virtual Sample Data Reduction
  • 相关文献

参考文献9

  • 1孙士明,王芹芹,纪友芳.单样本人脸识别中的虚拟样本扩展方法研究[J].微计算机应用,2010,31(9):6-11. 被引量:3
  • 2于旭,杨静,谢志强.虚拟样本生成技术研究[J].计算机科学,2011,38(3):16-19. 被引量:16
  • 3Wu J, Zhou Z H. Face recognition with one training image per person[J]. Pattern Recognition Letters, 2002, 23( 14): 1711 - 1719.
  • 4Belhurneur P N, Hespanha J P, Kriegrnan D. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997, 19(7): 711-720.
  • 5楼宋江,张国印.零空间保局判别本征脸[J].电子与信息学报,2011,33(4):962-966. 被引量:4
  • 6Hong Z Q, Yang J Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane[J], pattern recognition, 1991, 24(4): 317-324.
  • 7Chen L F, Liao H Y M, Ko M T, et al. A new LDA-based face recognition system which can solve the small sample size problem[J]. Pattern recognition, 2000, 33(I 0): 1713-1726.
  • 8Yu H, Yang J. A direct LDA algorithm for high-dimensional data-with application to face recognition[J]. Pattern recognition, 2001, 34(10): 2067-2070.
  • 9He X, Yan S, Hu Y, et al. Face recognition using Laplacianfaces[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005, 27(3): 328-340.

二级参考文献50

  • 1温津伟,罗四维,赵嘉莉,黄华.通过创建虚拟样本的小样本人脸识别统计学习方法[J].计算机研究与发展,2002,39(7):814-818. 被引量:9
  • 2张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 3张莉,陈恭和.入侵检测系统中训练样本集的构造方法[J].计算机工程与应用,2006,42(28):145-146. 被引量:6
  • 4Jianxin W, Zhi - Hua Z. Face recognition with one training image per person [ J ]. Pattern Recognition Letters. 2002 ( 23 ) : 1711 - 1719.
  • 5Songcan C, Daoqiang Z, Zhi - Hua Z. Enhanced (PC) 2A for face recognition with one training image per person [ J ]. Pattern Recognition Letters. 2004 ( 25 ) : 1173 - 1181.
  • 6Hong Z Q. Algebraic feature extraction of image for recognition [J]. Patter Recognition. 1991,24(3) :211 -219.
  • 7Schapire E R, Singer Y. Improved Boosting Algorithms Using Confidence - Rated Predictions [ J]. Machine Learning. 1999,37 (3) :297 -336.
  • 8An G. The effect of adding noise during back propagation training on a generalization performance[J]. Neural Computation, 1996(8): 643-671.
  • 9Li Der-chiang, Fang Yao-hwei. A non-linearly virtual sample generation technique using group discovery and parametric equations of hypersphere[J]. Expert Systems with Applications, 2009,36(1) :844-851.
  • 10Zhou Zhi-hua. Learning with unlabeled data and its application to image retrieval[C]//Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence. Guilin, China, 2006 : 5 10.

共引文献20

同被引文献79

引证文献8

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部