期刊文献+

一个新的伪随机生成器构造方案

Construction of a new pseudorandom generator
下载PDF
导出
摘要 伪随机生成器(pseudorandom generator,PRG)是当代密码学研究的一个基本结构。新方案基于格理论中的经典问题的困难性来构造PRG。首先根据多维子集和问题(multidimensional subset sum简称MSS)构造MSS单向函数,再使用单向迭代函数的方法构造新的PRG。使用一般单向函数的PRG构造方案,若单向函数输入长度是m,则要求种子长度达到O(m7)。相比之下,由于MSS单向函数有"大致正规"特性,新方案仅要求种子长度达到O(mlog m)。 Pseudorandom generator (PRG)is one of the fundamental primitives for modern cryptography study.The new con-struction is based on classical hard lattice problem.First the one-way function of multidimensional subset sum (MSS)is construc-ted.Then we complete the PRG construction by using the one-way iteration method.PRG construction for general one-way func-tion requires a seed length of O(m7 ),where m is the input length of the one-way function.In contrast,since MSS one-way func-tion is almost regular,the new construction only requires a seed length of O(m log m).
作者 程宽 毕经国
出处 《中国科技论文》 CAS 北大核心 2014年第4期420-424,共5页 China Sciencepaper
关键词 计算复杂性理论 伪随机生成器 格问题 单向函数 computational complexity theory PRG lattice problem one-way function
  • 相关文献

参考文献13

  • 1Blum M, Manuel S, Micali S. How to generate crypto- graphically strong sequences of pseudorandom bits [J]. SIAM J Comput, 1984, 13(4): 850-864.
  • 2Yao A C. Theory and applications of trapdoor functions [C]//23rd IEEE Annual Symposium on Foundations of Computer Science. Washington, USA, 1982: 80-91.
  • 3Levin L A. One way function and pseudorandom gener- ators [J]. Combinatorica, 1987, 7(4): 357-363.
  • 4Goldreich O, Krawczyk H, Luby M. On the existence of pseudorandom generators [J]. SIAM J Comput, 1993, 22(6): 1163-1175.
  • 5Haitner I, Harnik D, Reingold O. On the Power of the Randomized Iterate [M]. Advances in Cryptology- CRYPTO, Berlin Heidelberg: Springer, 2006: 22-40.
  • 6H~stad J, Impagliazzo R, Levin L A, et al. A pseudo- random generator from any one-way function [J]. SI- AM J Comput, 1999, 28(4).- 1364-1396.
  • 7Micciancio D, Regev O. Worst-case to average-case re ductions based on Gaussian measures [J]. SIAM J Comput, 2007, 37(1): 267-302.
  • 8Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions [C]// 40th annual ACM symposium on Theory of computing. Victoria BC, Canada, 2008: 197-206.
  • 9Wang Xiaoyun, Liu Mingjie, Tian Chengliang, et al. Improved nguyen-vidick heuristic sieve algorithm for shortest vector problem [C]//6th ACM Symposium on Information, Computer and Communication Security. New York, USA, 2011: 1-9.
  • 10Shor P W. Polynomial-time algorithms for prime factor- ization and discrete logarithms on a quantum computer [J]. SIAM J Comput, 1997, 26(5): 1484-1509.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部