期刊文献+

面向大数据处理的划分聚类新方法 被引量:22

Novel partitional clustering algorithm for large data processing
下载PDF
导出
摘要 大数据处理是物联网研究和应用上不可回避的难题之一,针对常用聚类方法在大数据处理上的不足,设计了一种划分聚类新方法。该方法采用了大数据集的抽样技术,对多次抽取的规模足够大的样本进行聚类以确定自然簇质心的初始位置,在此基础上采用抽样后剩余数据样本对质心的初始位置进行更新,以便校正偏离理想位置的初始质心。该划分聚类算法具有线性空间复杂度和时间复杂度。实验结果表明所提的新聚类算法不仅能得到比常用聚类算法更理想的结果,而且运行速度快,适合处理大规模数据的聚类任务。 Large data processing is an inevitable problem for the internet of things research and application. To solve the shortcomings of large data processing with the common clustering methods,a novel partitional clustering method is designed.The new method determines the initial positions of natural cluster centroids by clustering the samples in sizes large enough,which are selected using the large data sampling method repeated-ly.Next it updates the initial positions using the remaining data to correct the centroids positions deviating from the ideal positions.The designed partitional clustering algorithm has linear space and time complexity.The ex-perimental results show that this new clustering algorithm can not only give better clustering results than com-mon clustering algorithms,but also run fast and be suitable for large data clustering processing.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第5期1010-1015,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60975042) 黑龙江省教育厅科学技术项目(12511166)资助课题
关键词 大数据 物联网 划分聚类 抽样 质心 large data internet of things partitional clustering sampling centroid
  • 相关文献

参考文献19

  • 1A*zori I., lera A, Morabito G. The internet of things: a survey[J]. Computer NetJrks, 2010, 54 (15) : 2787 - 2805.
  • 2Kopelz H. Interlet of things[M]. Real-Time Systems. Springer US, 2011: 307-323.
  • 3陈海明,崔莉,谢开斌.物联网体系结构与实现方法的比较研究[J].计算机学报,2013,36(1):168-188. 被引量:308
  • 4Deng W G, Wang L, Qi J, et al. An improved support vector machine model based on wavecluster[C]//Proc, of the Eleventh In- ternational Conference o: Industrial Management, 2012 : 514 - 518.
  • 5San Segundo P, Matia F, Rodriguez-Losada D, et al. An im proved bit parallel exact maximum clique algorithm[J]. Optimi- zation Letters, 2013: 1-13.
  • 6Li M, Lian X C, Kwok J T, et al. Time and space efficient spec- tral clustering via column sampling[C]//Proc, of the 1EEEConzputer Vision and Pattern Recognition, 2011 : 2297 - 2304.
  • 7Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystr0m method[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2) : 214 -225.
  • 8Guha S, Rastogi R, Shim K. CURE an efficient clustering al- gorithm for large databases[C]//Proc, of the ACM SIGMOD In- terruatio:val ConJrence on Management of Date, 1998 : 73 - 84.
  • 9Choromanska A, Jebara T, Kim H, et al. Fast spectral eluste ring via the Nystrm method[C]//Proc, of the 24th International ConJrence on Algorithmic Learning Theory, 2013 : 367 - 381.
  • 10Hearn T A, Reichel L. Fast computation of convolution opera tions via low-rank approximation [J]. Applied Numerical Mathematics, 2014, 75: 136-153.

二级参考文献68

  • 1Presser M, Barnaghi P M, Eurich M, Villalonga C. The SENSEI project: Integrating the physical world with the digital world of the network of the future. Global Communi- cations Newsletter, 2009, 47(4) : 1-4.
  • 2Walewski J W. Initial architectural reference model for IoT. EU FP7 Project, Deliverable Report: D1.2, 2011.
  • 3Sarma S, Brock D L, Ashton K. The networked physical world Proposals for engineering the next generation of com- puting, commerce automatic-identification. MIT Auto-lD Center, White Paper: MIT-AUTOID-WH-001, 2010.
  • 4Koshizuka N, Sakamura K. Ubiquitous ID: Standards for ubiquitous computing and the Internet of Things. IEEE Pervasive Computing, 2010, 9(4): 98-101.
  • 5Electronics and Telecommunication Research Institute (ETRI) of the Republic of Korea. Requirements for support of USN applications and services in NGN environment// Proceedings of the ITU NGN Global Standards Initiative (NGN-GSI) Rapporteur Group Meeting. Geneva, Switzerland, 2007:11-21.
  • 6Vicaire P A, Xie Z, Hoque E, Stankovic J A. Physicalnet: A generic framework for managing and programming across pervasive computing networks. University of Virginia: Technical Report CS-2008-2, 2008.
  • 7ETSI. Machine to Machine communications (M2M) Func- tional architecture. ETSI, Technical Specification: 102 690 V1.1.1, 2011.
  • 8Pujotle G. An autonomic-oriented architecture for the Inter net of Things//Proceedings of the IEEE John Vincent Atana- soff 2006 International Symposium on Modern Computing (JVA). Sofia, Bulgaria, 2006:163-168.
  • 9Armen F, Barthel H, Burstein Let al. The EPCglobal Architecture Framework. EPCglobal, Standard Specification: Final Version 1.3, 2009.
  • 10OASIS WS-DD Technical Committee. Devices Profile for Web Services. OASIS, Standard: Version 1.1, 2009.

共引文献307

同被引文献211

引证文献22

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部