期刊文献+

云计算环境下排序算法的性能分析 被引量:1

Performance analysis on sorting algorithms in cloud computing environment
下载PDF
导出
摘要 随着云计算环境中数据量的激增,人们急需研究在云环境下如何对大量数据进行快速有效的分析与处理。在云环境下对大量数据进行高效地排序是其中一个重要问题。基于Hadoop平台研究并实现了几种高效的排序算法,包括:Radix sort,Quicksort和Sample sort算法。对各个排序算法的执行效率、CPU资源的消耗,内存的消耗,以及处理机间的通信量进行了研究和比较分析。通过大量运行在Hadoop上的实验,发现Hadoop平台上的Sample sort相较于Radix sort和Quicksort具有排序速度快,负载均衡度高,CPU消耗低等优势。这一结果为云计算环境下设计更高效、节能的算法提供了有效的依据和基础。 With the rapid increase of data amount in cloud computing environment ,it is an urgent need to study how to analysis and process those data fast and effectively .How to sort large scale data efficiently in cloud computing environment is a significant problem .Whether the widely used sorting algorithms can achieve high-performance and how many cloud computing resources they consume are concerned problems . This paper studies and implements several efficient sorting algorithms ,including Radix sort ,Quicksort and Sample sort ,based on Hadoop ,analyzes and compares the efficiency ,consumption of CPU resources , memory consumption and communication between machines .Through a large number of experiments ,it’s found that compared to Radix sort and Quicksort ,Sample sort has the advantages of higher sorting speed , higher load balancing and lower CPU consumption .This result provides a valid basis and foundation for designing more efficient ,energy-saving algorithms in cloud computing environment .
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期58-64,共7页 Journal of Chongqing University
基金 国家自然科学基金资助项目(61173014)
关键词 云计算 HADOOP 排序算法 MAPREDUCE cloud computing hadoop sorting algorithm MapReduce
  • 相关文献

参考文献17

  • 1覃雄派,王会举,杜小勇,王珊.大数据分析——RDBMS与MapReduce的竞争与共生[J].软件学报,2012,23(1):32-45. 被引量:386
  • 2王珊,王会举,覃雄派,周烜.架构大数据:挑战、现状与展望[J].计算机学报,2011,34(10):1741-1752. 被引量:616
  • 3陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311
  • 4Kenneth E. Sorting networks and their applications [C]// Proceedings of Spring Joint Computer Conference, April 30-May 2, 1968, Atlantic City, NJ. New York: ACM, 1968:307-314.
  • 5Xi N,Fang Z Y,Miao Z,et al. Parallel radix sort and its application in ray tracing [C]//Proceedings of 2010 the Second International Conference on Information Science and Engineering, December 4-6, 2010, Hangzhou, China. Piscataway:IEEE Press,2010 : 1366-1369.
  • 6Korthikanti V A,Gut A. Analysis of parallel algorithms for energy conservation in scalable multicore architectures [C] // Proceedings of 2009 International Conference on Parallel Processing, September 22-25, 2009, Vienna. Piscataway :IEEE Press, 2009 : 212-219.
  • 7Davidson A, Tarjan D, Garland M, et al. Efficient parallel merge sort for fixed and variable length keys [C] // Proceedings of Innovative Parallel Computing, May 13-14, 2012 ,San Jose,CA. PiscatawaydEEE Press,2012 : 1-9.
  • 8Biernacki C, Jacques J. A generative model for rank data based on insertion sort algorithm [J]. Computational Statistics &. Data Analysis, 2013,58 : 162-176.
  • 9Amato N M,Iyer R,Sundaresan S, et al. A comparison of parallel sorting algorithms on different architectures [R]. Texas:Texas A&M University,1996.
  • 10Shimizu S, Sugisaki K, Ohmori H. Recursive sample- entropy method and its application for complexity observation of earth current [C] // Proceedings of 2008 International Conference on Control, Automation and Systems, October 14-17,2008, Seouh Piscataway : IEEE Press, 20008: 1250-1253.

二级参考文献153

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献2197

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部