期刊文献+

DSPCA在自适应视频跟踪算法中的应用

Adaptive visual tracking based on DSPCA
下载PDF
导出
摘要 为了解决单一固定目标模型在复杂的场景中易产生跟踪漂移问题,提出一种基于DSPCA的自适应粒子滤波跟踪方法,通过稀疏主成分分解(DSPCA)在线获取互补图像集,同时将其按照新的相似度BRS进行自适应融合作为新目标模型。与经典的粒子滤波跟踪算法、视觉分解跟踪算法和多特征自适应融合跟踪算法,与有挑战性较高的场景视频相比,提出的算法在形态、运动快速及严重遮挡的运动场景中,都能鲁棒地跟踪到目标。 In order to solve the problem resulted from tracking drift of single reference color histograms ,a sort of particle filtering algorithm based on DSPCA (decomposition-sparse-principal component-analysis) is presented .The image set with complementary is accessed by DSPCA ,which is fused by means of the new similarity as the new object model .Compared with the basic particle filtering ,visual tracking decomposition and adaptive multiple cues fusion tracking algorithm in challenging scenarios ,the presented method can robustly track the object in fast motion and the object w hich is mostly blocked .
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期82-87,共6页 Journal of Chongqing University
基金 重庆市科委科技计划攻关重点项目(CSTC 2009AB2231) 常州工学院科研基金资助项目(YN1208)
关键词 视频跟踪 粒子滤波 稀疏主成分分解 BRS visual tracking particle filter DSPCA BRS
  • 相关文献

参考文献17

  • 1Nguyen Q D, Milgram M. Online subspace learning using a misalignment detection for tracking a talking face in video sequence [J]. Neurocomputing, 2010, 73(10/12):1624-1630.
  • 2Candamo J, Shreve M, Goldgof D B, et al. Understanding transit scenes: a survey on Human behavior-recognition algorithms [J]. IEEE Transactions on Intelligent Transporta- tion Systems, 2010,11(1) :206-224.
  • 3Lucena M, Fuertes J M, Blanca N P, et al. Tracking people in video sequences using multiple models[J]. Multimedia Tools And Applications, 2010, 49 (2): 371-403.
  • 4蒋蔚,伊国兴,曾庆双.基于SVM数据融合的实时粒子滤波算法[J].系统工程与电子技术,2010,32(6):1334-1338. 被引量:7
  • 5韩松,张晓林,陈雷,徐文进.基于改进高斯粒子滤波器的目标跟踪算法[J].系统工程与电子技术,2010,32(6):1191-1194. 被引量:5
  • 6Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. ACM Computing Surveys, 2006,38(4) : 352- 355.
  • 7Comanieiu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5) :564-577.
  • 8Isard M, Blake A. Condensation- conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998,29 ( 1 ) : 5-28.
  • 9Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision,2008,77(1/3) : 125-141.
  • 10Leiehter I, Lindenbaum M, Rivlin E. Mean shift tracking with multiple reference color histograms [J]. Computer Vision and Image Understanding, 2010, 114(3) ,400-408.

二级参考文献57

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 3凌建国,刘尔琦,杨杰,杨磊.基于H_∞滤波器的红外小目标运动预测和跟踪方法[J].红外与毫米波学报,2005,24(5):366-369. 被引量:11
  • 4Singer R A.Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Trans.on Aerospace and Electronic Systems (S0018-9251),1970,6(4):473-483.
  • 5Bar-Shalom Y.Estimation and tracking,principles,techniques,and software[M].Boston,London:Artech House,1993,382-410.
  • 6Lerro D,Bar-Shalom Y.Tracking with debiased consist-ent converted measurements versus EKF[J].IEEE Trans.on Aerospace and Electronics Systems,1993,29(3):1015-1022.
  • 7Haykin S Ed.Kalman Filtering and Neural Networks[M].New York:Wiley,2001.
  • 8Juliet S,Uhlmann J.Unscented filtering and nonlinear estimation[J].Proc.of IEEE,2004,192(3):401-422.
  • 9Carpenter J,Clifford P,Fearnhead P.Improved particle filter for nonlinear problems[J].IEE Proc.of Radar,Sonar Navigation,1999,146(1):1-7.
  • 10Harrison P J,Stevens C F.Bayesian forecasting (with discussion)[J].Journal of the Royal Statistical Society,Series B,1976,38:205-247.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部