期刊文献+

一类具有Holling-Ⅲ功能反应的捕食系统的脉冲控制 被引量:3

Pulse Control to Predator-prey System with Holling-Ⅲ Functional Response
下载PDF
导出
摘要 建立了一类具有状态脉冲的Holling-Ⅲ类捕食系统模型,当捕食者的数量达到一定值时,人工收获捕食者,同时收获或添加食饵,使两者的综合收益达到最大。对无脉冲作用的系统进行定性分析,得到正平衡点存在且全局渐近稳定的条件。利用后继函数方法及脉冲微分方程几何理论,讨论状态脉冲控制下系统阶一周期解的存在性,并证明周期解是轨道渐近稳定的。最后,利用数值模拟进行验证,讨论系统的生态意义。 A predator-prey system model with Holling-Ⅲ functional response and state dependent pulse control was formulated for the study. In order to get the maximum composite income, we captured predators and gathered or added prey in the same time when the number of predators reached a specified value. Through the qualitative analysis of the system without impulse effect,the sufficient condition for the existence and global stability of the positive equilibrium was obtained. Based on the successor function and impulsive differential geometry theory, the existence of order-one periodic solution of the system under state impulsive control was discussed. Besides,the orbit asymptotical stability of the periodic solution was proved through experiments. Lastly, to verify the theoretical results, some numerical sire ulations were given and the biological significance of the system was summarized.
出处 《山东科技大学学报(自然科学版)》 CAS 2014年第2期86-95,共10页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(11371230) 山东省自然科学基金项目(ZR2012AM012) 山东省高等学校科技计划项目(J13LI05)
关键词 Holling-Ⅲ类功能反应 状态脉冲 后继函数 阶一周期解 轨道渐近稳定 Holling-Ⅲ functional response state impulse successor function order-one periodic solution orbit asymptotically stable
  • 相关文献

参考文献13

  • 1Holling C S.The functional response of predators to prey density and its role in mimicry and population regulation[J] .Memoirs of the Entomological Society of Canada,1965,46:1-60.
  • 2Maynard-Smith J.Models in ecology[M] .Cambridge:Cambridge University Press,1978:30-33.
  • 3Hsu S B,Huang W.Global stability for a class of predator-prey systems[J] .SIAM Journal on Applied Mathematics,1995,55(3):763-783.
  • 4赵文才,李玉新,孟新柱.脉冲接种作用下具有时滞的传染病模型分析[J].应用数学,2010,23(2):370-375. 被引量:2
  • 5岳宗敏,刘海峰,蔺小林.脉冲控制的害虫综合防治模型及仿真[J].吉林大学学报(理学版),2012,50(2):183-190. 被引量:2
  • 6孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134. 被引量:28
  • 7Meng X Z,Li Z Q,Nieto J J.Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment[J] .Journal of Mathematical Chemistry,2010,47(1):123-144.
  • 8Zhang T Q,Meng X Z,Song Y,et al.Dynamical analysis of delayed plant disease models with continuous or impulsive cultural control strategies[C] //Abstract and Applied Analysis.New York:Hindawi Publishing Corporation,2012:ID 428453.
  • 9Tang S Y,Xiao Y N,Chen L S,et al.Integrated pest management models and their dynamical behaviour[J] .Bulletin of Mathematical Biology,2005,67 (1):115-135.
  • 10Nie L F,Teng Z D,Hu L,et al.Qualitative analysis of a modified Leslie-Gower and Holling-type Ⅱ predator-prey model with state dependent impulsive effects[J] .Nonlinear Analysis:Real World Applications,2010,11 (3):1364-1373.

二级参考文献63

  • 1庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 2D'Onofrio Alberto. Stability properties of pulse vaeeination strategy in SEIR epidemie model[J]. Mathematical Bioseienees, 2002,179(1) : 57,72.
  • 3Meng Xinzhu, Chen Lansun. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J]. Applied Mathematics and Computation,2008,197(2):582-597.
  • 4Meng Xinzhu,Chen Lansun,Cheng Huidong. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J]. Applied Mathematics and Computation, 2007,186:516-529.
  • 5Meng Xinzhu, Cheng Huidong,Chen Lansun. An SEIR epidemic model with profitless delays latent period time delay and pulse vaceination[J]. Journal of Mathematical Control Science and Applications,2007,1 (1):85-101.
  • 6Meng Xinzhu,Chen Lansun. Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination[J]. Taiwan Residents Journal of Mathematics,2008,12(5):1107-1122.
  • 7Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1976.
  • 8Clark C W. Bioeconomic Modeling and Resource Management [C]//Levin S A, Hallam T G, Grose L J eds. Applied Mathematical Ecology, New York : Springer-Verlag, 1989.
  • 9Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1990.
  • 10GohB S. Managenment and Analysis of Biological Populations[M]. Amsterlan:Elsevier Scientific Publishing Company, 1980.

共引文献84

同被引文献9

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部