期刊文献+

人类原钙粘蛋白基因簇调控元件的克隆及对其启动子活性的影响 被引量:3

Cloning and Functional Analysis of the Regulatory Elements in the Human Protocadherin Gene Cluster
下载PDF
导出
摘要 人类原钙粘蛋白(Protocadherin,Pcdh)基因簇包含53个成串排列非常相似的基因,组成3个紧密相连的基因簇(α,β和γ)。原钙粘蛋白基因簇γ通过启动子选择性表达产生神经元细胞膜表面的分子多样性,但是,该多样性产生的分子机制还不清楚。调控元件HS7L和HS5-1aL作为候选的增强子可能具有调控Pcdhγ基因表达的作用。利用分子克隆的方法,将调控元件HS7L和HS5-1aL分别克隆至包含γa9、γa10、γb3、γb7和γc3启动子的荧光素酶报告基因的下游。通过荧光素酶报告基因试验检测其对该5种Pcdhγ启动子活性的影响,发现HS7L对5种启动子活性具有增强作用,HS5-1aL对γa10启动子活性具有增强作用。之后,通过基因沉默绝缘子CTCF,发现下调CTCF不仅降低γb1基因表达,而且能够显著降低γb1启动子报告基因活性。试验结果表明调控元件HS7L和HS5-1aL能够增强Pcdhγ启动子活性,推测可能通过CTCF介导的增强子-启动子相互作用调控Pcdhγ的细胞特异性基因表达。 Promoter choice of members of the protocadherinγ (Pcdhγ) gene cluster in single neurons may generate an enormous diversity on the cell surface of individual neurons in the brain, but the underlying molecular mechanisms are poorly understood. Here, candidate enhancer elements of the human PcdhT clus- ter, HS7L and HS5-1aL, were cloned into the downstream of the luciferase reporter gene which is under the control of the γa9, γa10, γb3, γb7, or γc3 promoter. Luciferase reporter gene assay, which was used to char- acterize the functions of these two elements, revealed that HS7L enhances the promoter activity of all of the five genes; by contrast, HS5-1aL increases the γa10 promoter activity. In addition, the insulator CTCF knockdown led to a decrease in the levels of γb 1 mRNAs and its promoter activity. These results suggested that HS7L and HS5-1aL play an important role in regulating the cell-specific PcdhT expression in the brain by CTCF-mediated long-distance enhancer-promoter DNA looping interactions.
出处 《生命科学研究》 CAS CSCD 北大核心 2014年第2期95-99,150,共6页 Life Science Research
基金 国家973课题资助项目(2009CB918701) 国家自然科学基金资助项目(31171015 8126112390)
关键词 原钙粘蛋白基因簇 选择性表达 绝缘子CTCF 增强子-启动子相互作用 protoeadherin gene cluster promoter choice insulator CTCF enhancer-promoter DNA interaction
  • 相关文献

参考文献27

  • 1李伟,吴强.原钙粘蛋白分子与神经元的多样性[J].科技视界,2013(27):14-14. 被引量:3
  • 2WU Q, MANIATIS T. A striking organization of a large family of human neural cadherin-like cell adhesion genes[J]. Cell, 1999,97(6): 779-790.
  • 3ZIPURSKY S L, SANES J R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly[J]. Cell, 2010,143 (3): 343-353.
  • 4SANO K, TANIHARA H, HEIMARK R L, et al. Protoead- herins a large family of eadherin-related molecules in central nervous system[J]. The EMBO Journal, 1993,12(6): 2249-2256.
  • 5KOHMURA N, SENZAKI K, HAMADA S, et ol. Diversity re- vealed by a novel family of cadherins expressed in neurons at a synaptic complex[J]. Neuron, 1998, 20(6): 1137-1151.
  • 6LEFEBVRE J L, KOSTADINOV D, CHEN W V, et al. Proto- eadherins mediate dendritic self-avoidance in the mammalian nervous system[J]. Nature, 2012, 488(7412): 517-521.
  • 7CHEN W V, ALVAREZ F J, LEFEBVRE J L, et 01. Funetion- al significance of isoform diversification in the protoeadherin gamma gene cluster[J]. Neuron, 2012, 75(3): 402-409.
  • 8SUO L, LU H, YING G, et ol. Protoeadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GT Pase[J]. Journal of Molecular Cell Biolog3,, 2012,4(6):362-376.
  • 9于钰,索伦,吴强.PCDHα在髓鞘形成和少突胶质细胞发育中的作用[J].Zoological Research,2012,33(4):362-366. 被引量:4
  • 10GARRETTA M, SCHREINER D, LOBAS M A, et ol. Gam- ma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling path- way[J]. Neuron, 2012, 74(2): 269-276.

二级参考文献56

  • 1DOBHAL S, PANDEY D, KUMAR A, et al. Studies on plant regeneration and transformation efficiency of Agrob(wterium mediated transformation using neomycin phosphotransferase II (nptII) and glucuronidase ( G US ) as a reporter gene[]1. African Journal of Biotechnology, 2010, 9(41 ): 6853-6859.
  • 2CAR() E, CASTELLANO M M, GUTIERREA C. A chro- matin link that couples cell division to root epidermis pattern- ing in Arat~idopsis[J]. Nature, 2007, 447(7141 ): 213-217.
  • 3COHEN B, ZIV K, PLAKS V, et al. MRI detection of" tran- scriptional regulation of gene expression in transgenic mice[J]. Nature Medicine, 2007, 13(4) : 498-503.
  • 4GARBETF K A, HORVATH S. Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression[J]. Molecular Psychiatry, 2010, 15(10): 987-995.
  • 5EBERT M S, NEIISON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of" small RNAs in mammalian cells[J]. Nature Methods, 2007, 4(9): 721-726.
  • 6FRY R C, BEGLEY T J, SAMSON LD. Genome-wide re- sponses to DNA-damaging agents[J]. Annual Review of Miero- biology, 2005, 59: 357-377.
  • 7LOENING A M, WU A M , GAMBHIR S S. Red-shii~ed Re- nilla reniformis |uciferase variants tor imaging in living sub- jects[J]. Nature Methods, 2007, 4(8 ) : 641-643.
  • 8HIDDEDE J, RANQUET C, ROPERS D, et (d. Experimental and computational validation of models of fluo-rescent and lu- minescent reporter genes in bacteria[J]. BMC Systems Biology, 2010,4-( 1 ) :55-71.
  • 9YANG Yu, HUANG Zhi-ying, DIAO Meng-xue, et al. Isola- tion and characterization of the petlI promoter of Acidithiobacillus ferrooxidans[J]. Journal of Food, Agriculture & Environment, 2010, 8(3&4): 1383-1387.
  • 10MASSOUD T F, GAMBHIR S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new lizht[J1. Genes Development, 2003, 17(5) : 545-580.

共引文献25

同被引文献14

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部