期刊文献+

基于基面力的有限变形广义拟Hamilton原理

Generalized Hamilton-type quasi-variational principles of finite deformation based on base forces
下载PDF
导出
摘要 传统的有限变形变分原理采用二阶张量的描述方法,因此在模型的推导和建立上都较为复杂。基面力作为一种描述应力状态的新方法,较传统的应力张量表示方法简单。基于基面力理论框架,定义了有限变形时域边值问题的基本方程。考虑到体力与面力为伴生力,采用变积法建立了有限变形广义拟Hamilton原理。按照基本变量之间的对应关系,将基于基面力的有限变形广义拟Hamilton原理转化为以第二类P-K应力张量和Green应变张量为基本变量的有限变形广义拟Hamilton原理。进而证明本文建立的基于基面力的有限变形广义拟Hamilton原理的正确性。 The traditional variational principle of finite deformation is described by the second-order tensor, so the deduction and establishment of a model are more complicated. As a new description of the stress state at a point, the base force method is simpler than the traditional stress tensor expression method. Based on the theory framework of a base force, a basic equation of the time-domain boundary value at finite deformation was defined. Considering that both the body force and the surface force are follower forces, the generalized Hamilton-type quasi-variational principles of finite deformation were established through the use of the variational integral method. According to the corresponding relations of basic variables, the generalized Hamilton-type quasi-variational principles of finite de-formation based on base forces were transformed into the generalized Hamilton-type quasi-variational principles of fi-nite deformation with the second category of the Piola-Kirchhoff stress tensor and Green finite strain tensor as basic variables. The purpose of this was to further verify the accuracy of the generalized Hamilton-type quasi-variational principles of finite deformation based on base forces which were established in this paper.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第4期408-412,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(10272034) 中央高校基本科研业务费专项资金资助项目(HEUCF130205) 黑龙江省博士后科研启动金资助项目(LBH-Q11142 LBH-Q12120)
关键词 基面力 有限变形 广义拟Hamilton原理 变积方法 base forces finite deformation generalized Hamilton-type quasi-variational principles variational inte-gral method
  • 相关文献

参考文献4

二级参考文献32

  • 1ВВРумяндев,梅凤翔.欧拉和力学的变分原理[J].力学进展,1993,23(1):86-104. 被引量:7
  • 2钱伟长.对合变换和薄板弯曲问题的多变量变分原理[J].应用数学和力学,1985,6(1):25-46.
  • 3黄玉盈 王武久.弹性非保守系统的拟固有频率变分原理及其应用[J].固体力学学报,1987,8(2):127-135.
  • 4钱令希.余能理论[J].中国科学,1950,1(2):449-456.
  • 5胡海昌.论弹性体力学与受范性体力学中的一般变分原理[J].物理学报,1954,10(3):259-289.
  • 6钱伟长.弹性理论中广义变分原理的研究及其在有限元计算中的应用[J].力学与实践,1979,(1):16-24.
  • 7[1]Hellinger E.Der allgemein Ansatz der Machanik der Kontinua.Encyclopqdia der Mathematischen Wissenschaften,1914,4:602
  • 8[2]Reissner E.On a variational theorem for finite elastic deformation.J Math Phys,1953,32:129-135
  • 9[3]Levinson M.The complementary energy theorem in finite elasticity.J Appl Mech,1965,32:826-828
  • 10[4]Washizu K.Variational Methods in Elasticity and Plasticity.Oxford:Pergamon press,1968

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部