期刊文献+

CAT选题策略研究

New Exploration of CAT Selection Strategy
下载PDF
导出
摘要 传统CAT选题策略是将被试者的估计值作为真实值去选题目,使用的都是间接指标,旨在寻找最有可能的解。其缺点是计算方法复杂,误差最大值不易控制。针对传统CAT选题策略的特殊性:不离散,被估能力值不能直接求解,稳定性差,提出一种将能力值线性离散化,并使用"最大期望判准率"的方法来计算每次被试者的估计能力,旨在降低计算的难度,提高测验的精度及其稳定性。实验结果表明,该方法具有良好的性能。 Traditional CAT selection strategy is the estimate of the subjects as a real value to choose the best subject, using indirect index, looking for the most likely solution as purpose. But these methods have a common defect including complex calculation, maximum error controlled unwell. Based on the particularity of traditional CAT selection strategy such as no discrete, estimated value indirectly solving, poor stability, we put forward estimated value linear discretization, and use the "maximum expected rate of criteria " to calculate subjects estimate value each time. It can increase test precision, reduce the difficulty of calculation and improve the stability of the test. The experimental results show that this method shows good performance.
作者 黎佳
出处 《重庆科技学院学报(自然科学版)》 CAS 2014年第3期115-117,共3页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金 福建省教育厅B类自然科学基金项目(JB13272)
关键词 选题策略 精度 离散化 最大期望判准率 selection strategy accuracy discretization maximum expected rate of criteria
  • 相关文献

参考文献5

  • 1RobR Meijer, MichaelL Nering. Computerized Adaptive Testing:Overview and Introduction[ J ]. Applied Psycholog- ical Measurement, 1999,23 (3) : 187-194.
  • 2Tatsuoka K K. Computerized Cognitive Diagnostic Adaptive Testing:Effect on Remedial Instruction as Empirical Vali- dation [ J ]. Journal of Educational Measurement, 1997,34 (1) :3-20.
  • 3Hua-hua Chang,Zhiliang Ying. A-stratified Multistage Com- puterized Adaptive Testing [ J ]. Applied Psychological Measurement, 1999,23 ( 3 ) :211-222.
  • 4尚志勇,丁树良.认知诊断自适应测验选题策略探新[J].江西师范大学学报(自然科学版),2011,35(4):418-421. 被引量:11
  • 5西蒙.数据挖掘基础教程[M].范明,牛常勇译.北京:机械工业出版社,2009.

二级参考文献12

  • 1林海菁,丁树良.具有认知诊断功能的计算机化自适应测验的研究与实现[J].心理学报,2007,39(4):747-753. 被引量:21
  • 2Quellmalz E S, Pellegrino J W. Perspective technology and testing [J]. Science, 2009, 323(2): 75-79.
  • 3Tatsuoka K K. Rule space: an approach for dealing with miscon- ceptions based on item response theory [J]. Journal of Educationl Measurement, 1983, 20(4): 345-354.
  • 4de la Torre J. DINA model and parameter estimation: a didactic [J]. Journal of Educational and Behavioral Statistics, 2009, 34: 115-130.
  • 5Leihton J P, Gierl M J, Hunka S M. The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka's rule-space approach [J]. Journal of Education Measurement, 2004, 41(3): 205-237.
  • 6Xu Xueli, Chang Huahua, Douglas J. A simulation study to compare CAT strategies for cognitive diagnosis [EB/OL]. [2010-10-12]. http://www.psych.umn.edu/psylabs/catcentral/pdf%20files/xu03-01.pdf.
  • 7Cheng Ying.Computerized adatpive testing-new development and application [D]. Urbana-Champaign: Doctoral Disertation, University of Illionis, 2008.
  • 8杨智为,林佳桦,杨思伟,等.基于学生概念结构之适性测验演算法[C]//全国教育与心理统计与测量学术年会暨第八届海峡两岸心理与教育测验学术研讨会.云南:昆明,2008.
  • 9Tatsuoka KK(1995)Architecture of knowledge structure and cognitive diagnosis: A statistical pattern Recognition and classi-fication approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan(Eds.) Cognitively diagnostic assessment (pp.327-361). Hillsdale, N J; Erlbanm.
  • 10Chang Huahua,Ying Zhiliang. A-stratified multistage computerized adaptive testing [J]. Applied Psychological Measurement, 1999, 23: 211-222.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部