期刊文献+

和算家的累约术

Indefinite Problem in Wasan
下载PDF
导出
摘要 以和算家建部贤弘和中根元珪的累约术为例,通过探讨和算家的问题来源,复原其算法的构造思想,及其处理这些问题时与中算家的不同方法和态度,说明中日两国数学家在数学创造方面的一些异同之处.和算作为继承并发展中国古代数学的一个标本,对于深刻理解机械化程序算法体系的数学传统,颇有益处. Japanese mathematics, namely Wasan, was well-developed before the Meiji period. Takebe Katahiro (1664-1739)and Nakane Genkei (1662-1733) , among a great number of mathematicians in Wasan, maybe the most famous ones. Taking Takebe and Nakane's indefinite problem as examples, the similarities and differences are made between Wasan and Chinese mathematics. According to investigating the sources and attitudes to these problems which both Japanese and Chinese mathematicians dealt with, the paper tries to show how and why Japanese mathematicians accepted Chinese tradition and beyond. As a typical sample of the succession of Chinese tradition, Wasan will help people to understand the real meaning of Chinese tradition deeper.
作者 曲安京
机构地区 西北大学数学系
出处 《广西民族大学学报(自然科学版)》 CAS 2014年第1期9-15,共7页 Journal of Guangxi Minzu University :Natural Science Edition
基金 国家自然科学基金(10771169)
关键词 不定分析 建部贤弘 中根元珪 Wasan indefinite problem Takebe Katahiro Nakane Genkei
  • 相关文献

参考文献7

  • 1Wu Wentsun. Mathematics Mechanization[M]. Beijing: Science Press & Dorrecht : Kluwer Academic Publishers, 2000 : 1- 66.
  • 2华罗庚.从祖冲之的圆周率谈起[A]..华罗庚科普著作选集[M].上海:上海教育出版社,1984.47-80.
  • 3曲安京.和算对中算的继承与创新:以关孝和的内插法为例.Jour-nal for History oI Mathematics, 2013, 26 (4).
  • 4Tamotsu Tsuchikura. The Method of Successive Divisions by Takebe Katahiro and Nakane Genkei[M]. Knobloch, Komatsu, Liu (ed.). Seki, Founder of Modern Mathematics in Japan. To- kyo: Springer, 2013:343-352.
  • 5建部贤弘.累约术.[M].(日本)东北大学图书馆藏,冈本文库写0304.
  • 6日本学士院.明治前日本数学史(2)[M].东京:临川书店,1979:310-318.
  • 7李继闵.“通其率”考释[A].吴文俊主编.中国数学史论文集[M]第1册[C].济南:山东教育出版社,1985.24-36.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部