期刊文献+

基于CARE模型的金融市场VaR和ES度量 被引量:5

The Estimation of Value at Risk and Expected Shortfall in Financial Market Based on CARE Models
下载PDF
导出
摘要 次贷危机余波未了,欧债危机又风生水起。在此背景下,深入研究金融市场风险的度量方法及其预测防范机制,对推进金融市场改革、维护国家金融安全具有重要的参考价值。本文以期望分位数(Expectile)模型为基础,结合CAViaR模型,构建出条件自回归期望分位数模型(CARE),并以此来计算金融收益序列的VaR和ES,用以度量金融市场风险。通过对上证指数和深圳成指的实证分析发现:CARE模型在对金融收益序列的VaR估计和预测方面,明显优于风险管理实务界主流的RiskMetrics模型,也优于CAViaR模型,而且在ES度量方面也有着非常明显的优势。 Influence of the subprime crisis has not eliminated,while the European debt crisis is blustering. In this context, an in-depth study of the financial market risk has played an important role on the development of China' s economy. This paper proposes the Conditional Autoregressive Expectile models, which is based on Asymmetric Least Squares and CAViaR models, to estimate VaR and ES. Thus, the financial market risk can be described by CARE models. The empirical results show that CARE models are better than RiskMetrics and CAViaR models in estimating VaR. Furthermore, the CARE models have distinct advantages in estimating ES.
作者 钟山 傅强
出处 《预测》 CSSCI 北大核心 2014年第3期40-44,共5页 Forecasting
基金 教育部博士点基金资助项目(20100191110033)
关键词 条件自回归期望分位数模型 非对称最小二乘法 动态分位数检验 自举检验 Conditional Autoregressive Expeetile models(CARE) Asymmetric Least Squares(ALS) dynamic quantiletest bootstrap test
  • 相关文献

参考文献15

  • 1Artzner P F,Delbain F,Eber J M, et al. . Coherentmeasures of risk [J] . Mathematical Finance, 1999, 9(3): 203-228.
  • 2Acerbi C,Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26(7);1487-1503.
  • 3Yamai Y, Yoshiba T. On the validity of value-at-risk:comparative analyses with expected shortfall [J]. Mone-tary and Economic Studies, 2002,20(1) : 57-85.
  • 4Poon S, Granger C J. Forecasting volatility in financialmarkets: a review[J]. Journal of Economic Literature,2003,41(2) : 478-539.
  • 5Koenker R W, Bassett G W. Regression quantiles[J].Econometrica, 1978,46(1): 33-50.
  • 6McNeil A J, Frey R. Estimation of tail-related risk meas-ures for heteroscedastic financial time series : an extremevalue approach [J]. Journal of Empirical Finance, 2000,7(3/4) : 271-300.
  • 7Manganelli S, Engle R F. Value at risk models in finance[R] . Working Paper, No. 75 , European Central Bank,2001. 1-9.
  • 8朱国庆,张维,张小薇,敖路.极值理论应用研究进展评析[J].系统工程学报,2001,16(1):72-77. 被引量:24
  • 9陈学华,杨辉耀.股市风险VaR与ES的动态度量与分析[J].系统工程,2004,22(1):84-90. 被引量:25
  • 10余素红,张世英,宋军.基于GARCH模型和SV模型的VaR比较[J].管理科学学报,2004,7(5):61-66. 被引量:76

二级参考文献47

共引文献152

同被引文献70

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部