期刊文献+

基于高通量测序的寒地沼气池微生物群落解析 被引量:13

Analysis of microbial community in a full-scale biogas digester of cold region using high-throughput sequencing technology
下载PDF
导出
摘要 为实现寒地沼气发酵系统高效、稳定运行,应建立基于沼气发酵微生物群落的复合调控策略.本研究耦合454高通量测序和PCR-DGGE分析方法,对北方规模最大的海林农场沼气池内细菌及产甲烷古菌群落结构进行解析.取沼气池稳定运行期沼液样品,分析系统内微生物群落多样性.结果显示,共获得1 297条高质量微生物序列,在属和种的分类水平上,至少存在581个细菌属和666个细菌种.优势菌群有Firmicutes、Bacteroidetes及Proteobacteria,相对丰度分别为46.39%、21.41%和18.98%.优势属(相对丰度>5.0%)包括Proteiniphilum、Spirochaeta和Wolinella.DGGE分析结果表明,产甲烷古菌包括Methanocorpusculum sp.、Methanosaeta sp.、Methanobacterium sp.及Methanosarcina sp..,表明沼气池的产甲烷途径以乙酸代谢类型为主,水解、酸化过程主要由来自动物消化系统内的细菌完成. To realize the stable and efficient operation of biogas digester in cold region, a combined regulation technique of microbial community should be established. The microbial community in the largest full-scale digester of Hailin Farm was investigated using 454 pyrosequencing technology and PCR-DGGE. The massively parallel sequencing technology was used to measure bacterial diversity of biogas slurry during a stable operation. A total of 1297 sequences were obtained, and the dominant bacteria were Firmicutes, Bacteroidetes and Proteobacteria, which accounted for 46. 39%, 21.41% and 18.98%, respectively. At genus level (the relative abundances 〉 5.0%), Proteiniphilum, Spirochaeta and WolineUa were the abundant taxa. The diversities of methanogen were analyzed using PCR-DGGE, and the detected archaea were Methanocorpusculum sp., Methanosaeta sp., Methanobacterium sp. and Methanosarcina sp.. Notably, the methane produced by acetoclastic methanogens, and dominant fermentative bacteria during the hydrolysis and acidogenesis were detected form animal digestive system.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第4期36-42,共7页 Journal of Harbin Institute of Technology
基金 国家科技支撑计划专题项目(2012BAD14B06-04) 辽宁工业大学教师科研启动基金资助项目(X201310)
关键词 沼气 微生物群落 海林农场 牛粪 454焦磷酸测序技术 biogas microbial community Hailin Farm cow manure 454 pyrosequencing technology
  • 相关文献

参考文献20

  • 1RESCH C, BRAUN R, KIRCHMAYR R. The influence of energy crop substrates on the mass-flow analysis and the residual methane potential at a rural anaerobic digestion plant [ J ]. Water Science and Technology, 2008, 57(1): 73-81.
  • 2DEMIRBAS M F. Current technologies for biomass conversion into chemicals and fuels [ J ]. Journal of Energy Sources, 2006, A28(13) : 1181-1188.
  • 3LO Y C, SARATALE G D, CHEN W M, et al. Isolation of cellulosehydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production[J]. Enzyme Microbial Technology, 2009, 44 (6/7) : 417-425.
  • 4任南琪,刘敏,王爱杰,丁杰,李洪民.两相厌氧系统中产甲烷相有机酸转化规律[J].环境科学,2003,24(4):89-93. 被引量:52
  • 5NYANGA L K, NOTU M J R, GADAGA T H, et al. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in zimbabwe [ J ]. International Journal of Food Microbiology, 2007, 120(1/2) : 159-166.
  • 6赵光,马放,魏利,蔡宏,王哲.北方低温沼气发酵技术研究及展望[J].哈尔滨工业大学学报,2011,43(6):29-33. 被引量:17
  • 7COLE J R, WANG Q, CARDENAS E, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis [ J ]. Nucleic Acids Research, 2009, 37 (1): 141-145.
  • 8SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur- open-source, platform- independent, community-supported software for describing and comparing microbial communities [ J ]. Applied and Environment Microbiology, 2009, 75 (23) : 7537-7541.
  • 9LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0 [ J ]. Bioinformatics, 2007, 23(21) : 2947-2948.
  • 10KOICHIRO T, JOEL D, MASATOSHI N, et al. MEGA4 : molecular evolutionary genetics analysis (MEGA) software version 4. 0 [ J ]. Molecular Biology Evolution, 2007, 24(8): 1596-1599.

二级参考文献30

  • 1speeceR E 著 李亚新译.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001.1-2.
  • 2贺延龄编著.废水的厌氧生物处理[M].北京:中国轻工业出版社,1999.125-126.
  • 3LIER van J B, TILCHE E, AHRING B K, et al. New perspectives in anaerobic digestion[J]. Water Science and Technology, 2001,43 ( 1 ) :1-18.
  • 4GIJZEN H J. Anaerobic digestion for sustainable development: a natural approach[J]. Water Science Technology. 2002.45 (10) .321-328.
  • 5MACE M A, LLABRES S. Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives [ J ]. Bioresource Technology, 2000,74:3-16.
  • 6NIELSEN H B, ANGELIDAKI I. Codigestion of manure and industrial organic waste at centralized biogas plants : process imbalances and limitations [ J ]. Water Sciences and Technology,2008,58 (7) : 1521-1528.
  • 7SHIN H S, HANS K, SONG Y C, et al. Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste[J]. Water Res, 2001,35 : 3441-3447.
  • 8ALVAREZ R, LIDEN G. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production [J]. Biomass and Bioenergy, 2009,33:527-533.
  • 9PANDEY A. Aspects of fermenter design for solid state fermentation [ J ]. Process Biochem, 1991, 26 : 355-361.
  • 10MACIAS-CORRAL M, SAMANI Z, HANSON A, et al. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure [ J ]. Bioresour Technol, 2008,99 (17) : 8288-8293.

共引文献67

同被引文献214

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部