期刊文献+

基于拉普拉斯分值和模糊C均值聚类的滚动轴承故障诊断 被引量:17

Rolling Bearing Fault Diagnosis Based on Laplacian Score and Fuzzy C-means Clustering
下载PDF
导出
摘要 针对滚动轴承故障振动信号的非平稳特征和故障征兆的模糊性,提出了基于拉普拉斯分值和模糊C均值(FCM)聚类的滚动轴承故障诊断方法。该方法首先在时域和频域对滚动轴承振动信号进行特征提取,组成初始特征向量;然后利用拉普拉斯分值进行特征选择,形成故障特征向量;最后以FCM聚类为故障分类器,实现滚动轴承不同故障类型的识别。应用实例和对比实验表明,该方法能有效提取滚动轴承振动信号特征,诊断滚动轴承故障。 According to the non-stationary features and fuzzy fault symptoms of the vibration sig-nals of a rolling bearing with faults,a fault diagnosis method of rolling bearings was proposed using Laplacian score and FCM clustering.Firstly,the features of a vibration signal of a rolling bearing were extracted in time domain and frequency domain,from which an initial feature vector was formed.Then by using Laplacian score method to select feature,fault feature vectors were obtained.Finally,a FCM clustering method was used as a fault feature classifier to recognize different fault types of a rolling bearing.Application examples and contrast tests show that this method can be used to extract the fea-tures of vibration signals of rolling bearings and diagnoses the faults of rolling bearings effectively.
作者 欧璐 于德介
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第10期1352-1357,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51275161)
关键词 滚动轴承 拉普拉斯分值 模糊C均值聚类 故障诊断 rolling bearing Laplacian score fuzzy C-means (FCM)clustering fault diagnosis
  • 相关文献

参考文献18

  • 1Diallo D, Benbouzid M E H, Hamad D,et al. Fault Detection and Diagnosis in an Induction Machine Drive: a Pattern Recognition Approach Based on Concordia Stator Mean Current Vector[J]. IEEE Trans. Energy Convers,2005,20(3) :512-519.
  • 2Ondel O, Clerc G, Boutleux E,et al. Fault Detec tion and Diagnosis in a Set Inverter-induction Ma chine through Multidimensional Membership Func tion and Pattern Recognition[J]. IEEE Trans. En ergy Conversion,2009,24(2) :431-441.
  • 3杨宇,于德介,程军圣.基于经验模态分解的滚动轴承故障诊断方法[J].中国机械工程,2004,15(10):908-911. 被引量:49
  • 4Guo H, Jack L B, Nandi A K. Feature Generation Using Genetic Programming with Application to Fault Classification[J]. IEEE Transaction on Sys- tem Man and Cybernetics, 2005, 35(1) :89-99.
  • 5Dy J G,Brodley C E. Feature Selection for Unsu pervised Learning[J]. Journal of Machine Learning Research, 2004,5 : 845-889.
  • 6Kohavi R,John G H. Wrappers for Feature Subset Selection[J]. Artificial Intelligence, 1997 ( 1/2 ) : 273- 324.
  • 7Bishop C M. Neural Networks for Pattern Recogni- tion[M]. Oxford: Oxford University Press, 1995.
  • 8He Xiaofei, Cai D, Niyogi P. Laplacian Score for Feature Selection[C]//Advances in Neural Informa- tion Processing System. Cambridge, MA: MIT Press,2005.
  • 9Xiao Yuanjing, Sheng Li, Zhang D. Supervised and Unsupervised Parallel Subspace Learning for Large Scale Image Recognition[J]. Circuits and Systems for Video Technology, 2012, 22(10): 1497-1511.
  • 10Solorio-Fernandez S, Martinez-Trinidad J F, Carrasco- Ochoa J A,et al. Hybrid Feature Selection Method for Biomedical Datasets[C]//2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). San Diego, CA , 2012:150 - 155.

二级参考文献20

  • 1张力宁,刘元朋,张定华.利用模糊神经网络实现逆向工程中的区域分割[J].计算机工程与应用,2004,40(31):33-35. 被引量:8
  • 2Ling Jing,Qu Liangsheng.Feature Extraction Bas-ed on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis. Journal of Sound and Vibration, 2000,234(1):135-148
  • 3Peter W T, Peng Y H, Richard Y. Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis-Their Effectives and Flexibilities. Journal of Vibration and Acoustics, 2000, 123(3): 303-310
  • 4Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A, 1998, 454(12): 903-995
  • 5杨伦标 高英仪编.模糊数学原理及应用[M].广州:华南理工大学出版社,1998.94-132.
  • 6钟秉林 黄仁.机械故障诊断学[M].北京:机械工业出版社,1998..
  • 7Wang W J,McFadden P D.Application of Wavelets to Gearbox Vibration Signals for Fault Detection[J].Journal of Sound and Vibration,1996,192(5):927-939.
  • 8Lin Jing.Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis[J].Journal of Sound and Vibration,2000,234 (1):135-148.
  • 9Koh J,Suk M.A Multilayer Self-organizing Feature Map for Range Image Segmentation[J].Neural Networks,1995,8(1):67-86.
  • 10Alrashdan A,Motavalli S.Automatic Segmentation of Digitized Data for Reverse Engineering Applications[J].IIE transactions,2000,32:59-69.

共引文献83

同被引文献166

引证文献17

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部