期刊文献+

运动背景下高精度视频稳定算法仿真研究 被引量:1

Research on Simulation of Highly Accurate Video Stabilization Algorithm under Moving Background
下载PDF
导出
摘要 针对传统视频稳定算法存在的前景局部运动影响全局运动估计精度的难点问题,提出了一种可靠特征集合匹配的高精度视频稳定算法。算法首先利用距离筛选法和金子塔模型提高特征匹配精度,然后利用MLESAC算法剔除运动物体上的无效特征,最后将保留下来的精确匹配特征带入仿射运动模型求出全局运动矢量,并据此对视频帧进行运动补偿以实现稳定视频的目的。实验结果表明,相比于传统基于特征匹配的视频稳定算法,改进全局运动估计算法提高了视频稳定的精度。 Aiming at the the problems of traditional video stabilization that the global motion estimation accuracy is reduced by the local motion. A highly accurate video stabilization algorithm based on feature matching was put forward. Firstly screening method based on distance and Gaussian pyramid model was used to improve the feature matching accuracy, and then MLESAC algorithm was used to remove the features from local motion object. Finally, the global motion estimation vector based on affine model was computed by accurately matching preserved features and the trembling image was compensated to stabilize the image sequence according to the global motion estimation vector. The experiment results show that compared with the traditional feature-based matching video stabilization algorithm, the motion estimation algorithm improves the video stabilization accuracy.
出处 《计算机仿真》 CSCD 北大核心 2014年第5期224-228,共5页 Computer Simulation
基金 国家自然科学基金(61202098) 科工技术(2012A03A0915) 科工技术(2012A03A0919)
关键词 视频稳像 特征匹配 运动估计 最大似然估计 Video stabilization Feature match Motion estimation MLESAC
  • 相关文献

参考文献11

  • 1张博,唐文彦,黄勇.采用改进的几何算法快速估计图像旋转角度[J].计算机仿真,2009,26(6):263-266. 被引量:5
  • 2J B Shi, C Tomasi. Good features to Track [ C ]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR. Seattle: 1994:593 -600.
  • 3刘玉红,涂丹.数字图像稳像算法研究[J].计算机仿真,2008,25(7):200-204. 被引量:10
  • 4Hu Feng, Michae[ Gleicher. Subspace Video Stabilization[ C ]. ACM Transactions on Graphics ( presented at SIGGRAPH 2011 ) , 2011,30( 1 ).
  • 5王敬东,王智慧,张春,丁尤蓉.基于特征匹配的电子稳像优化技术[J].光子学报,2012,41(11):1372-1376. 被引量:2
  • 6Zhang Yanhao, Yao Hongxun, Xu Pengfei. Video stabilization based on saliency driven sIvr matching and discriminative RANSAC [ C ]. ICIMCS 2011:65-69.
  • 7O Chum. Two-View Geometry Estimation by Random Sample and Consensus[ C ]. in Department of CybernetiesFaeulty of Electrical Engineering. Czech Technical University in Prague, 2005.
  • 8Sunglok Choi, Taemin Kim. Performance Evaluation of RANSAC Family[ C]. In Proceedings of the British Machine Vision Confer- ence (BMVC) , 2009.
  • 9S Dharmendra, W Modha. Scott Spanpler. Feature Weighting in k -Means Clustering[ J]. Machine Learning, 2003,52:217-237.
  • 10雷小锋,谢昆青,林帆,夏征义.一种基于K-Means局部最优性的高效聚类算法[J].软件学报,2008,19(7):1683-1692. 被引量:114

二级参考文献38

共引文献127

同被引文献18

  • 1Lee K Y, Chuang Y Y, Chen B Y, et al. Video stabilization using robust feature trajectories[ C ]//Proceedings of the 12th In- ternational Conference on Computer Vision. Kyoto : IEEE, 2009 : 1397-1404.
  • 2Zhang G, Hua W, Qin X, et al. Video stabilization based on a 3D perspective camera model[ J]. The Visual Computer, 2009, 25( 11 ) : 997-1008.
  • 3LiuS, Yuan L, Tan P, et al. Steadyflow: spatially smooth opti- cal flow for video stabilization [ C ]//Proceedings of IEEE Confer- ence on Computer Vision and Pattern Recognition. Columbus, OH : IEEE, 2014 : 4209-4216.
  • 4Grundmann M, Kwatra V, Essa I. Auto-directed video stabiliza- tionwith robust 11 optimal camera paths [ C ]//Proceedings of IEEE Conference on Computer Vision and Pat-tern Recognition. Providence, RI:IEEE, 2011: 225-232.
  • 5Grundmann M, Kwatra V, Castro D, et al. Calibration-free roll- ing shutter removal[ C ]//Proceedings of IEEE International Con- ference on Computational Photography. Seattle, WA : IEEE, 2012: 1-8.
  • 6Liu F, Gleicher. M, Jin H, et al. Content-preserving warps for 3D video stabilization [ J]. ACM Transactions on Graphics, 2009, 28(3) :341-352.
  • 7Zhou.Z, Jin H, Ma Y. Plane-based content preserving warps for video stabilization [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR : IEEE, 2013 : 2299-2306.
  • 8Liu S, Wang Y, Yuan L, et al. Video stabilization with a depth camera [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. Providence, RI :IEEE, 2012: 89-95.
  • 9Liu F, Gleicher M, Wang J, et al. Subspace video stabilization [ J ]. ACM Transactions on Graphics, 2011,30 (1) :623-636.
  • 10Goldstein A, Fattal R. Video stabilization using epipolar geometr-y[ J ]. ACM Transactions on Graphics, 2012, 31 ( 5 ) : 573-587.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部