期刊文献+

基于局部梯度和面积重叠合并法的人脸检测 被引量:2

Face Detection Based on Local Gradient Patterns and Square Overlap Merge Method
下载PDF
导出
摘要 研究了一种人脸检测方法。采用局部梯度模式(Local Gradient Patterns,LGP)提取人脸特征,用AdaBoost学习算法进行了层级分类器的训练。提出了应用面积重叠合并的识别方法(Square Overlap Merge Method,SOMM),可以降低检测错误的正检测误差,同时克服了训练样本少的情况下分类器可靠性差的缺点。实验中采用MIT的人脸数据库进行分类器的训练,并在训练好的分类器的基础上,又进一步采集了6000多张人脸图片,进行分类器的再训练,以求分类器准确可靠。实验证明上述方法能够快速有效的检测人脸,并且能很好的克服光照、姿态、背景、遮挡物等对人脸检测的影响。 The problem of face detection was discussed in this paper. The features of faces were extracted by using Local Gradient Patterns(LGP). AdaBoost way was used to train cascaded classifiers. Square Overlap Merge Method (SOMM) was exploited to detect face in order to reduce the false positive detection error greatly, which can make up the disadvantages of the low reliability of classifiers trained by a small amount of training samples. In the ex- periment, the MIT databases were utilized to train the classifiers. In order to make sure the classifiers more accurate and reliable, we collected additional 6000 face images to train the classifiers trained before. The results of the experiment show that this method can detect faces fast and effectively. Furthermore, it can overcome the impact of illumination, posture, background, occluder and etc.
作者 李兰 王朝立
出处 《计算机仿真》 CSCD 北大核心 2014年第5期279-283,共5页 Computer Simulation
基金 国家自然科学基金(61374040) 上海市教委科技创新项目(13ZZ115) 上海市研究生创新项目(54-13-302-102) 上海市重点学科(S30501)
关键词 人脸检测 局部梯度模式 层级分类器 面积重叠合并法 Face detection Local gradient patterns Cascaded classifiers Square overlap merge method
  • 相关文献

参考文献13

  • 1P Viola, M Jones. Fast and robust classification using asymmetric adaboost and a detector cascade [ C ]. In Proceedings of Advances in Neural Information ~. ~essing System. 2001 : 1311 - 1318.
  • 2Paul Viola, Michael Jones. Robust Real-time Object Detection [ J]. International Journal of Computer Vision. 2002,57 (2) :137 -154.
  • 3T Ojala, M Pietikainen, D Harwood. A comparative study of tex- ture measures with classification based on feature distributions[ J]. Pattern Recognition. 1996,29( 1 ) :51-59.
  • 4Bongjin Jun, Daijin Kim. Robust face detection using local gradi- ent patterns and evidence accumulation[ J]. Pattern Recognition. 2012,45(2012) :3304-3316.
  • 5H Rowley, S Baluja, T Kanade. Neural network-based face detec- tion[J]. IEEE Transactions on Pattern Analysis and Machine In- telligence. 1998,20( 1 ) :23-38.
  • 6S Liao, X Zhu, ZLei, L Zhang, S Li. Learning multi-scale block local binary patterns for face recognition[ C]. In Proceedings of the Second International Conference on Biometrics. 2007:828-837.
  • 7K Mikolajczyk, C Schmid, A Zisserman. Human detection based on a probabilistic assembly of robust part detectors [ C ]. In Pro- ceedings of the European Conference on Computer, 2004: 69-82.
  • 8V Subburaman, S Marcel. Fast bounding box estimation based face detection[ C]. In Proceedings of the ECCV Workshop on Face De- tection: Where We Are, and What Next .9 . 2010.
  • 9Y Freund, R E Schapire. A decision-theoretic generalization of on -line learning and an application to boosting[ J]. Journal of Com- puter and System Sciences. 1997,55 (1) : 119-139.
  • 10R E Schapire, Y Singer. Improved boosting algorithms using con- fidence-rated predictions[J]. Machine Learning. 1999:80-91.

同被引文献27

  • 1R ESchapire. The strength of weak learnability [ J ]. Machine Leaming, 1990,5(2) : 197-227.
  • 2N Littlestone, M K Warmuth. The weighted majority algorithm [ J ]. Information and Computation, 1994,108 ( 2 ) : 212-261.
  • 3Y Freund, R E Schapire. Experiments with a new Boosting algo- rithm[ C]. Proceedings of the 13th Conference on Machine Learn- ing. San Francisco, USA: Morgan Kanfmann, 1996:148-156.
  • 4Y Freund, R E Schapire. A decision-theoretic generalization of on -line learning and an application to Boosting[ J]. Journal of Com- puter and System Sciences, 1997,55( 1 ) : 119-139.
  • 5D P Solomatine, D L Shrestha. AdaBoost. RT: A boosting algo- rithm for regression problems [ C ]. Proc of the Int Joint Conf on Neural Networks. Budapes, 2004 : 1163-1168.
  • 6Liu Shuang, et al. Efficiency enhancement of a process-based rainfall-runoff model using a new modified AdaBoost. RT tech- nique[ J ]. Applied Soft Computing, 2014,23 (5) :521-529.
  • 7D L Shrestha, D P Solomatine. Experiments with AdaBoost. RT, an improved boosting scheme for regression [ J ]. Neural Compu- ting, 2006,18:1678-1710.
  • 8徐绍发.发球与接发球[M].北京:人民体育出版社,2007:1-7.
  • 9Wong P K C.Developing an intelligent assistant for table tennis umpires[C]//First Asia International Conference on Modelling and Simulation,Phuket,Thailand,2007:27-30.
  • 10Patrick K C Wong.Developing an intelligent table tennis umpiring system:identifying the ball from the scene[C]//Secend International Conference on Modelling and Simulation,2008:445-450.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部